Skip to main content
Log in

Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov.

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two new methanogenic bacteria, Methanocorpusculum sinense spec. nov. strain DSM 4274 from a pilot plant for treatment of distillery wastewater in Chengdu (Province Sichuan, China), and Methanocorpusculum bavaricum spec. nov. strain DSM 4179, from a wastewater pond of the sugar factory in Regensburg (Bavaria, FRG) are described. Methanocorpusculum strains are weakly motile and form irregularly coccoid cells, about 1 μm in diameter. The cell envelope consists of a cytoplasmic membrane and a S-layer, composed of hexagonally arranged glycoprotein subunits with molecular weights of 90000 (Methanocorpusculum parvum), 92000 (M. sinense), and 94000 (M. bavaricum). The center-to-center spacings are 14.3 nm, 15.8 nm and 16.0 nm, respectively. Optimal growth of strains is obtained in the mesophilic temperature range and at a pH around 7. Methane is produced from H2/CO2, formate, 2-propanol/CO2 and 2-butanol/CO2 by M. parvum and M. bavaricum, whereas M. sinense can only utilize H2/CO2 and formate. Growth of M. sinense and M. bavaricum is dependent on the presence of clarified rumen fluid. The G+C content of the DNA of the three strains is ranging from 47.7–53.6 mol% as determined by different methods. A similar, but distinct polar lipid pattern indicates a close relationship between the three Methanocorpusculum species. The polyamine patterns of M. parvum, M. sinense and M. bavaricum are similar, but distinct from those of other methanogens and are characterized by a high concentration of the otherwise rare 1,3-diaminopropane. Quantitative comparison of the antigenic fingerprint of members of Methanocorpusculum revealed no antigenic relationship with any one of the reference methanogens tested. On the basis of the distant phylogenetic position of M. parvum and the data presented in this paper a new family, the Methanocorpusculaceae fam. nov., is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich HC, Robinson RW, Williams DS (1986) Ultrastructure of Methanosarcina mazei. Syst Appl Microbiol 7:314–319

    Google Scholar 

  • Aranki A, Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anacrobic bacteria. Am J Clin Nutr 25:1329–1334

    PubMed  CAS  Google Scholar 

  • Back W, Stackebrandt E (1978) DNS/DNS-Homologiestudien innerhalb der Gattung Pediococcus. Arch Microbiol 118:79–85

    Article  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Stewart M, Doyle RJ, Sprott GD (1985) Unusual stability of the Methanospirillum hungatei sheath. J Bacteriol 162:728–737

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Harris BJ, Patel GB, Sprott GD (1986b) Cell division and filament splitting in Methanothrix concilii. Can J Microbiol 32:779–786

    Article  Google Scholar 

  • Beveridge TJ, Patel GB, Harris BJ, Sprott GD (1986b) The ultrastructure of Methanothrix concilii, a mesophilic aceticlastic methanogen. Can J Microbiol 32:703–710

    Google Scholar 

  • Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae sp. nov. Arch Microbiol 134:28–32

    Article  CAS  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    CAS  PubMed  Google Scholar 

  • Darby GK, Jones AS, Kennedy JF, Walker RT (1970) Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii. J Bacteriol 103:159–165

    PubMed  CAS  Google Scholar 

  • Ferguson TJ, Mah RA (1983) Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl Environ Microbiol 45:265–274

    PubMed  CAS  Google Scholar 

  • Grant WD, Pinch G, Harris JE, De Rosa M, Gambacorta A (1985) Polar lipids in methanogenic taxonomy. J Gen Microbiol 131:3177–3286

    Google Scholar 

  • Harris JE, Pinn PA, Davis RP (1984) Isolation and characterization of a novel thermophilic, freshwater methanogen. Appl Environ Microbiol 48:1123–1128

    PubMed  CAS  Google Scholar 

  • Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic methanogen. Arch Microbiol 132:47–50

    Article  Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov., spec. nov., a new acetotrophic, non hydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9

    Article  CAS  Google Scholar 

  • Jones JB, Bowers B, Stadtman TC (1977) Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J Bacteriol 130:1357–1363

    PubMed  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Jones WJ, Nagle DP Jr., Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 5`:135–177

    Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The Bacteria, vol. VIII. Academic Press, Inc. Orlando San Diego New York London Toronto Montreal Sydney Tokyo, pp 413–457

    Google Scholar 

  • Kneifel H, Stetter KO, Andressen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245

    CAS  Google Scholar 

  • König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zbl Bakt Hyg, I Abt Orig C3:478–490

    Google Scholar 

  • König H, Stetter KO (1986) Studies on archaebacterial S-layers. Syst Appl Microbiol 7:300–309

    Google Scholar 

  • Macario AJL, Conway de Macario E (1983) Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst Appl Microbiol 4:451–458

    Google Scholar 

  • Macario AJL, Conway de Macario E (1985) Monoclonal antibodies of predefined molecular specificity for identification and classification of methanogens and for probing their ecologic niches. In: Macario AJL, Conway de Macario E (eds) Monoclonal antibodies against bacteria, vol. II. Academic Press, Inc., Orlando, Florida, pp 213–247

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of desoxribonucleic acid from its thermal denaturation. J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  • McGill TJ, Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE (1986) Characteristic archaebacterial 16 S rRNA oligonucleotides. Syst Appl Microbiol 7:194–197

    PubMed  CAS  Google Scholar 

  • Messner P, Hollaus F, Sleytr UB (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34:202–210

    Google Scholar 

  • Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054

    PubMed  CAS  Google Scholar 

  • North MJ, Turner R (1976) Diamine content of the cellular slime mould Dictyostelium discoideum: presence of 1,3-diaminopropane and putrescine. Microbiol Lett 4:221–228

    Google Scholar 

  • Ollivier BM, Mah RA, Garcia JL, Robinson R (1985) Isolation and characterization of Methanogenium aggregans sp. nov. Int J Syst Bacteriol 35:127–130

    CAS  Google Scholar 

  • Ollivier BM, Mah RA, Garcia JL, Boone DR (1986) Isolation and characterization of Methanogenium bourgense sp. nov. Int J Syst Bacteriol 36:297–301

    CAS  Google Scholar 

  • Paynter MJB, Hungate RE (1968) Characterisation of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951

    PubMed  CAS  Google Scholar 

  • Poulin R, Larochelle J, Nadeau P (1984) Polyamines in Acanthamoeba castellanii: presence of an unusually high, osmotically sensitive pool of 1,3-diaminopropane. Biochem Biophys Res Commun 122:388–392

    Article  PubMed  CAS  Google Scholar 

  • Rivard CJ, Smith PH (1982) Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32:430–436

    Article  Google Scholar 

  • Rivard CJ, Henson JM, Thomas MV, Smith PH (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490

    PubMed  Google Scholar 

  • Romesser JA, Wolfe RS, Mayer F, Spiess E, Walther-Mauruschat A (1979) Methanogenium, a genus of marine methanogenic bacteria and characterization of Methanogenium cariaci spec. nov. and Methanogenium marisnigri spec. nov. Arch Microbiol 121:147–153

    Article  CAS  Google Scholar 

  • Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322

    PubMed  CAS  Google Scholar 

  • Shaw PJ, Hills GJ, Henwood JA, Harris JE, Archer DB (1985) Three dimensional architecture of the cell sheath and septa of Methanospirillum hungatei. J Bacteriol 161:750–757

    PubMed  CAS  Google Scholar 

  • Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Ann Rev Microbiol 37:311–339

    Article  CAS  Google Scholar 

  • Sleytr UB, Messner P, Sára M, Pum D (1986) Crystalline envelope layers in archaebacteria. Syst Appl Microbiol 7:310–313

    Google Scholar 

  • Sleytr UB, Messner P (1988) Crystalline surface layers on bacteria. In: Sleytr UB, Messner P, Pum D, Sára M (eds) Crystalline bacterial cell surface layers. Springer, Berlin Heidelberg New York, pp 160–186

    Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Ludwig W, Fox GE (1985) 16 S ribosomal RNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in Microbiology. Academic Press, London, pp 75–107

    Google Scholar 

  • Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janekovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus sp. nov., a novel extremely thermophilic methanogen isolated from an icelandic hot spring. Zbl Bakt Hyg, I. Abt C2:166–178

    CAS  Google Scholar 

  • Stewart M, Beveridge TJ, Sprott GD (1985) Crystalline order to high resolution in the sheath of Methanospirillum hungatei: A cross-beta structure. J Mol Biol 183:509–515

    Article  PubMed  CAS  Google Scholar 

  • Tanner RS, Wolfe RS (1988) Nutritional requirements of Methanomicrobium mobile. Appl Environ Microbiol 54:625–628

    PubMed  CAS  Google Scholar 

  • Ulitzur S (1972) Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochim Biophys Acta 272:1–11

    PubMed  CAS  Google Scholar 

  • Van Brugger JJA, Zwart KB, Hermans JGF, Van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbosium sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Article  Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    PubMed  CAS  Google Scholar 

  • Wiegers U, Hilz H (1971) A new method using “Proteinase K” to prevent mRNA degradation during isolation from HeLa cells. Biochem Biophys Res Commun 44:513–519

    Article  PubMed  CAS  Google Scholar 

  • Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36

    Article  CAS  Google Scholar 

  • Winter J (1983) Maintenance of stock cultures of methanogens in the laboratory. Syst Appl Microbiol 4:558–563

    Google Scholar 

  • Zabel H-P, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137: 308–315

    Article  CAS  Google Scholar 

  • Zabel H-P, König H, Winter J (1985) Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst Appl Microbiol 6:72–78

    Google Scholar 

  • Zellner G, Winter J (1987a) Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol Lett 44:323–328

    CAS  Google Scholar 

  • Zellner G, Winter J (1987b) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol 9:284–292

    CAS  Google Scholar 

  • Zellner G, Alten C, Stackebrandt E, Conway de Macario E, Winter J (1987a) Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147:13–20

    Article  CAS  Google Scholar 

  • Zellner G, Vogel P, Kneifel H, Winter J (1987b) Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl Microbiol Biotechnol 27:306–314

    Article  Google Scholar 

  • Zellner G, Bleicher K, Kneifel H, Conway de Macario E, Tindall BJ, Winter J (1989a) Isolation and characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov., from a peat bog. Arch Microbiol 151:1–9

    Article  CAS  Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989b) Isolation and characterization of a thermophilic, sulfate-reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” Group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellner, G., Stackebrandt, E., Messner, P. et al. Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov.. Arch. Microbiol. 151, 381–390 (1989). https://doi.org/10.1007/BF00416595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00416595

Key words

Navigation