Skip to main content
Log in

Origin and early evolution of photosynthesis

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gyr:

gigayears

References

  • Amesz J (ed) (1987) Photosynthesis. New comprehensive Biochemistry, Vol 15. Elsevier, Amsterdam

    Google Scholar 

  • Arieli B, Padan E and Shahak Y (1991) Sulfide-induced sulfide-quinone reductase activity in thylakoids of Oscillatoria limnetica. J Biol Chem 266: 104–111

    PubMed  Google Scholar 

  • Awramik S (1992) The oldest records of photosynthesis. Photosynth Res 33: 75–89 (this issue)

    PubMed  Google Scholar 

  • Babcock GT (1987) The photosynthetic oxygen-evolving process. In: Amesz J (ed) Photosynthesis. New Comprehensive Biochemistry, Vol 15, pp 125–158. Elsevier, Amsterdam

    Google Scholar 

  • Barber J (1987) Photosynthetic reaction centres: a common link. Trends Biochem Sci 12: 321–326

    Article  Google Scholar 

  • Bartsch RG (1978) Cytochromes. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria. Plenum Press, New York

    Google Scholar 

  • Beale SI and Cornejo J (1991) Biosynthesis of phycobilins: 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IXα. J Biol Chem 266: 22333–22340

    PubMed  Google Scholar 

  • Beale SI and Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls, pp 287–391. McGraw-Hill Publishing Company, New York

    Google Scholar 

  • Beanland TJ (1990) Evolutionary relationships between ‘Q-type’ photosynthetic reaction centres: Hypothesis testing using parsimony. J Theor Biol 145: 535–545

    PubMed  Google Scholar 

  • Bélanger G, Bérard J, Corriveau P and Gingras G (1988) The structural genes coding for the L and M subunits of Rhodospirillum rubrum photoreaction center. J Biol Chem 263: 7632–7638

    PubMed  Google Scholar 

  • Blankenship RE (1985) Electron transport in green photosynthetic bacteria. Photosynth Res 6: 317–333

    Google Scholar 

  • Blankenship RE, Brune DC and Wittmershaus BP (1988) Chlorosome antennas in green photosynthetic bacteria. In: StevensJr SE and Bryant DA (eds) Light-energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 32–46. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Blankenship RE, Trost J, Causgrove T, Alden R, Brune E, Liebl U and Vermaas W (1991) Heliobacterial reaction centers as models for Photosystem I. Photochem Photobiol 53: 6S

  • Braterman PS and Cairns-Smith AG (1987) Iron photoprecipitation and the genesis of the banded iron-formations. In: Uitterdijk Appel PW and LaBerge GL (eds) Precambrian Iron-Formations, pp 215–245. Theophrastus Publications, SA, Athens, Greece

    Google Scholar 

  • BrockmannJr H and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19

    Google Scholar 

  • Brown JS (1985) Three photosynthetic antenna porphyrins in a primitive green alga. Biochim Biophys Acta 807: 143–146

    Google Scholar 

  • Bruce BD, Fuller RC and Blankenship RE (1982) Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci USA 79: 6532–6536

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    PubMed  Google Scholar 

  • Bryant DA (1987) The cyanobacterial photosynthetic apparatus: Comparison of those of higher plants and photosynthetic bacteria. In: Platt T and Li WKW (eds) Photosynthetic Picoplankton, Vol 214, pp 423–500. Canadian Bulletin of Fisheries and Aquatic Sciences

  • Budil DE, Gast P, Chang C-H, Schiffer M and Norris JR (1987) Three-dimensional X-ray crystallography of membrane proteins: Insights into electron transfer. Ann Rev Phys Chem 38: 561–583

    Article  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient archean lakes. Science 255: 74–77

    PubMed  Google Scholar 

  • Burke D, Alberti M, Stein D and Hearst J (1991) Chlorophyll Fe proteins and other chlorophyll biosynthesis genes from Rhodobacter capsulatus to higher plants. Photochem Photobiol 53: 85S

  • Cloud P (1973) Paleoecological significance of the banded iron formation. Econ Geol 68: 1135–1143

    Google Scholar 

  • Cohen Y (1984) Oxygenic photosynthesis, anoxygenic photosynthesis and sulfate reduction in cyanobacterial mats. In: Klug MJ and Reddy CA (eds) Current Perspectives in Microbial Ecology, pp 435–441. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Cohen Y (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: A model for microbial sulfur interactions. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 22–36. Am Soc Microbiol, Washington

    Google Scholar 

  • Cohen Y, Jorgensen JJ, Padan E and Shilo M (1975) Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257: 489–491

    Google Scholar 

  • deDuve C (1991) Blueprint for a Cell: The Nature and Origin of Life. Neil Patterson Publishers, Burlington, NC

    Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245: 1463–1473

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Google Scholar 

  • Dracheva S, VanDriessche G, VanBeeumen JJ, Williams JC and Blankenship RE (1991) Primary structure of cytochrome c-554 from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry 30: 11451–11458

    PubMed  Google Scholar 

  • Dutton PL (1986) Energy transduction in anoxygenic photosynthesis. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology. Photosynthesis III, Vol 19, pp 197–237. Springer-Verlag, New York

    Google Scholar 

  • Feiler U, Nitschke W, Michel H and Rutherford AW (1989) Symposium on Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, Abstract P-6, 19, Freiberg FRG

  • Felsenstein J (1988a) ‘Phylip’. Department of Genetics, University of Washington, Seattle, Washington

    Google Scholar 

  • Felsenstein JA (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27: 401–410

    Google Scholar 

  • Felsenstein JA (1988b) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22: 521–565

    Article  PubMed  Google Scholar 

  • Freeman JC and Blankenship RE (1990) Isolation and characterization of the membrane-bound cytochrome c-554 from the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus. Photosynth Res 23: 29–38

    Google Scholar 

  • Gabellini N (1988) Organization and structure of the genes for the cytochrome b/c1 complex in purple photosynthetic bacteria. A phylogenetic study describing the homology of b/c1 subunits between prokaryotes, mitochondria and chloroplasts. J Bioenergetics and Biomembranes 20: 59–83

    Google Scholar 

  • Gest H and Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a ‘new’ form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Google Scholar 

  • Gest H and Schopf JW (1983) Biochemical evolution of anaerobic energy conversion: The transition from fermentation to anoxygenic photosynthesis. In: Schopf JW (ed) Earth's Earliest Biosphere: Its Origin and Evolution, pp 135–148. Princeton Univ Press, Princeton

    Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E and Woese CR (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6: 152–156

    Google Scholar 

  • Golbeck JH and Bryant DA (1991) Photosystem I. In: Lee CP (ed) Current Topics in Bioenergetics: Light Driven Reactions in Bioenergetics, Vol 16, pp 83–177. Academic Press, New York

    Google Scholar 

  • Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V and Vogel HJ (eds) Evolving Genes and Proteins, pp 67–88. Academic Press, New York

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends in Genetics 5: 294–299

    Article  PubMed  Google Scholar 

  • Hartman H (1984) The evolution of photosynthesis and microbial mats: A speculation on the banded iron formations. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 449–453. Alan R. Liss Inc, New York

    Google Scholar 

  • Holo H and Sirevåg R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus Arch Microbiol 145: 173–180

    Google Scholar 

  • Holschuh K, Bottomley W and Whitfield PR (1984) Structure of the spinach chloroplast genes for the D2 and 44 kd reaction center proteins of Photosystem II and for tRNA Ser (UGA). Nucl Acid Res 8819–8834

  • Jurgens UJ, Meissner J, Fischer U, Knig WA and Weckesser J (1987) Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f thiosulfatophilum. Arch Microbiol 148: 72–76

    Google Scholar 

  • Kirmaier C and Holten D (1987) Primary photochemistry of reaction centers from the photosynthetic purple bacteria. Photosynth Res 13: 225–260

    Google Scholar 

  • Klemme J-H (1989) Organic nitrogen metabolism of phototrophic bacteria. Antonie van Leeuwenhoek 55: 197–219

    PubMed  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod J and Sirevåg R (1982) Quantitative and structural characterization of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132: 149–154

    Google Scholar 

  • Komiya H, Yeates TO, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R26 and 2.4.1: Symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci USA 84: 9012–9016

    Google Scholar 

  • Krawiec S and Riley M (1990) Organization of the bacterial chromosome. Microbiological Reviews 54: 502–539

    PubMed  Google Scholar 

  • Lake JA (1991) Tracing origins with molecular sequences: metazoan and eukaryotic beginnings. Trends Biochem Sci 14: 46–50

    Article  Google Scholar 

  • Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Schleifer KH and Harder W (eds) The Prokaryotes: A Handbook on the Biology of Bacteria; Ecophysiology, Isolation, Identification, and Applications (2nd edition), Vol II, Chap 90, pp 1982–1992. Springer-Verlag

  • Margulies MM (1991) Sequence similarity between Photosystems I and II. Identification of a Photosystem I reaction center transmembrane helix that is similar to transmembrane helix IV of the D2 subunit of Photosystem II and the M subunit of the non-sulfur purple and flexible green bacteria. Photosynth Res 29: 133–147

    Google Scholar 

  • Margulis L (1981) Symbiosis in Cell Evolution. WH Freeman and Company, San Francisco

    Google Scholar 

  • Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018: 163–167

    Google Scholar 

  • Mauzerall D and Borowska Z (1988) Photoreduction of carbon dioxide by aqueous ferrous ion: An alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA 85: 6577–6580

    Google Scholar 

  • Mauzerall DC (1990) The photochemical origins of life and photoreaction of ferrous ion in the archaean oceans. Origins of Life and Evolution of the Biosphere 20: 293–302

    Google Scholar 

  • McManus JD, Brune DC, Han J, Sanders-Loehr J, Meyer TE, Cusanovich MA, Tollin G and Blankenship RE (1992) Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus. J Biol Chem 267: 6531–6540

    PubMed  Google Scholar 

  • Mercer-Smith JA and Mauzerall DC (1984) Photochemistry of porphyrins: A model for the origin of photosynthesis. Photochem Photobiol 39: 397–405

    PubMed  Google Scholar 

  • Mercer-Smith JA, Raudino A and Mauzerall DC (1985) A model for the origin of photosynthesis—III. The ultraviolet photochemistry of uroporphyrinogen. Photochem Photobiol 42: 239–244

    PubMed  Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H and Norris JR (1987) Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570–2574

    Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Google Scholar 

  • Michel H, Weyer HA, Gruenberg H, Dunger I, Oesterhelt D and Lottspeich F (1986) The ‘light’ and ‘medium’ subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: Isolation of the genes, nucleotide and amino acid sequence. EMBO J 5: 1149–1158

    Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    Google Scholar 

  • Nitschke W and Rutherford AW (1991) Are all of the different types of photosynthetic reaction centre variations on a common structural theme? Trends Biochem Sci 16: 241–245

    Article  PubMed  Google Scholar 

  • Nitschke W Feiler U, Lockau W and Hauska G (1987) The photosystem of the green sulfur bacterium Chlorobium limicola contains two early electron acceptors similar to Photosystem I. FEBS Lett 218: 283–286

    Article  Google Scholar 

  • Nitschke W, Feiler U and Rutherford AW (1990a) Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry 29: 3834–3842

    PubMed  Google Scholar 

  • Nitschke W, Sétif P, Liebl U, Feiler U and Rutherford AW (1990b) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29: 11079–11088

    PubMed  Google Scholar 

  • Olson JM (1970) The evolution of photosynthesis. Science 168: 438–446

    PubMed  Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51

    PubMed  Google Scholar 

  • Olson JM and Pierson BK (1987a) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108: 209–248

    PubMed  Google Scholar 

  • Olson JM and Pierson BK (1987b) Origin and evolution of photosynthetic reaction centers. Origins of Life 17: 419–430

    Google Scholar 

  • Olson JM, Prince RC and Brune DC (1976) Reaction-center complexes from green bacteria. In: Chlorophyll-proteins, Reaction Centers and Photosynthetic Membranes, Vol 28, pp 238–246. Brookhaven Symposia in Biology

  • Otsuka J, Miyachi H and Horimoto K (1992) Structure model of core proteins in Photosystem I inferred from the comparison with those in Photosystem II and bacteria; an application of principal component analysis to detect the similar regions between distantly related families of proteins. Biochim Biophys Acta 1118: 194–210

    PubMed  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Shmuckler BE, Zargarov AA, Kutuzov MA, Telezhinskaya IN, Levina NB and Zolotarev AS (1988a) Photosynthetic reaction center of Chloroflexus aurantiacus. Primary structure of M-subunit. FEBS Lett 232: 364–368

    Article  PubMed  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Zolotarev AS, Shmuckler BE, Kutuzov MA, Telezhinskaya IN and Levina NB (1988b) Photosynthetic reaction centre of Chloroflexus aurantiacus. I. Primary structure of L-subunit. FEBS Lett 231: 273–242

    Article  Google Scholar 

  • Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA and Woese CR (1987) The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. System Appl Micro 9: 47–53

    Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30: 27–40

    Article  Google Scholar 

  • Pfennig N and Truper HG (1983) Taxonomy of phototrophic green and purple bacteria: A review. Ann Microbiol (Inst Pasteur) 134B: 9–20

    Google Scholar 

  • Pierson BK and Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24

    PubMed  Google Scholar 

  • Pierson BK and Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100: 283–305

    Google Scholar 

  • Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80: 80–84

    Google Scholar 

  • Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 402–427. Am Soc Microbiol, Washington

    Google Scholar 

  • Prince RC, Gest H and Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810: 377–384

    Google Scholar 

  • Ravnikar PD, Debus R, Sevrinck J, Saetaert P and McIntosh L (1989) Nucleotide sequence of a second psbA gene from the unicellular cyanobacterium Synechocystis 6803. Nucl Acid Res 17: 3991

    Google Scholar 

  • Rees DC, Komiya H, Yeates TO, Allen JP and Feher G (1989) The bacterial photosynthetic reaction center as a model for membrane proteins. Annu Rev Biochem 58: 607–633

    PubMed  Google Scholar 

  • Robert B and Moenne-Loccoz P (1990) Is there a proteic substructure common to all photosynthetic reaction centers? In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 65–68. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Rochaix JD, Dron M, Rahire M and Maloe P (1984) Sequence homology between the 32k dalton and the D2 chloroplast membrane polypeptides of Chlamydomonas reinhardii. Plant Mol Biol 3: 363–370

    Google Scholar 

  • Rutherford AW (1988) Photosystem II, the oxygen evolving photosystem. In: Stevens SEJr and Bryant DA (eds) Light-energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 163–177. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Schidlowski M (1984) Early atmospheric oxygen levels: constraints from Archaean photoautotrophy. J Geol Soc London 141: 243–250

    Google Scholar 

  • Schidlowski M (1988) A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333: 313–318

    Article  Google Scholar 

  • Schopf JW (ed) (1983) Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ Press, Princeton

    Google Scholar 

  • Shiozawa JA, Lottspeich F and Feick R (1987) The photochemical reaction center of Chloroflexus aurantiacus is composed of two structurally similar polypeptides. Eur J Biochem 167: 595–600

    PubMed  Google Scholar 

  • Shiozawa JA, Lottspeich F, Osterhelt D and Feick R (1989) The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem 180: 75–84

    PubMed  Google Scholar 

  • Smith JM, Dowson CG and Spratt BG (1991) Localized sex in bacteria. Nature 349: 29–31

    Article  PubMed  Google Scholar 

  • Sneath PHA (1989) Analysis and interpretation of sequence data for bacterial systematics: The view of a numerical taxonomist. System Appl Microbiol 12: 15–31

    Google Scholar 

  • Staehelin LA and Arntzen CJ (eds) (1986) Encyclopedia of Plant Physiology Photosynthesis III, Vol 19. Springer-Verlag, Berlin

    Google Scholar 

  • Staley JT, Bryant MP, Pfennig N and Holt JG (eds) (1989) Bergey's Manual of Systematic Bacteriology, Vol 3. Williams and Wilkins, Baltimore

    Google Scholar 

  • Stoeckenius W and Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Ann Rev Biochem 51: 587–616

    Article  PubMed  Google Scholar 

  • Trebst A (1986) The topology of the plastoquinone and herbicide binding peptides of Photosystem II in the thylakoid membrane. Z Naturforsch 41c: 240–245

    Google Scholar 

  • Trost JT and Blankenship RE (1989) Isolation of a photoactivity photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28: 9898–9904

    PubMed  Google Scholar 

  • Trost JT, McManus JD, Freeman JC, Ramakrishna BL and Blankenship RE (1988) Auracyanin, a blue copper protein from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry 27: 7858–7863

    Google Scholar 

  • Trost JT, Brune DC and Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. Photosynth Res 32: 11–22

    PubMed  Google Scholar 

  • Trumpower BL (1990) Cytochrome bc 1 complexes of microorganisms. Microbiol Rev 54: 101–129

    PubMed  Google Scholar 

  • Van deMeent EJ, Kleinherenbrink FAM and Amesz J (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015: 223–230

    Google Scholar 

  • VanGorkom (1987) Evolution of PHotosynthesis. In: Amesz J (ed) (1987) Photosynthesis. New Comprehensive Biochemistry, Vol 15. Elsevier, Amsterdam

    Google Scholar 

  • VanVliet P, Zannoni D, Nitschke W and Rutherford AW (1991) Membrane-bound cytochromes in Chloroflexus aurantiacus studied by EPR. European J Biochem 199: 317–323

    Google Scholar 

  • Wagner-Huber R, Brunisholz R, Frank G and Zuber H (1988) The BChl c/e-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett 239: 8–12

    Article  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ and Walter MR (1983) Environmental evolution of the Archean-early Proterozoic Earth. In: Schopf JW (ed) Earth's Earliest Biosphere: Its Origin and Evolution, pp 260–290. Princeton Univ Press, Princeton

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: Evidence of the earth's earliest benthos. In: Schopf JW (ed) Earth's Earliest Biosphere: Its Origin are Evolution, pp 187–213. Princeton Univ Press, Princeton

    Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 3–15. Am Soc Microbiol, Washington

    Google Scholar 

  • Wechsler T, Brunisholz R, Suter F, Fuller RC and Zuber H (1985) The complete amino acid sequence of a bacteriochlorophyll a binding polypeptide isolated the cytoplasmic membrane of the green photosynthetic bacterium from Chloroflexus aurantiacus. FEBS Lett 191: 34–38

    Article  Google Scholar 

  • Wechsler TD, Brunisholz RA, Frank G, Suter F and Zuber H (1987) The complete amino acid sequence of the antenna polypeptide B806–866-b from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett 210: 189–194

    Article  Google Scholar 

  • Wellington CL, Taggart AKP and Beatty JT (1991) Functional significance of overlapping transcripts of crtEF, bchCA, and puf photosynthesis gene operons in Rhodobacter capsulatus. J Bacteriol 173: 2954–2961

    PubMed  Google Scholar 

  • Williams JC, Steiner LA and Feher G (1986) Primary structure of the reaction center from Rhodopseudomonas sphaeroides. PROTEINS: Structure, Function, and Genetics 1: 312–325

    Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI and Feher G (1983) Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80: 6505–6509

    Google Scholar 

  • Williams JGK and Chisholm DA (1987) Nucleotide sequences of both psbD genes from the cyanobacterium Synechocystis 6803. In: Biggins J (ed) Prog in Photosynth Res, Vol IV, pp 809–812. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  Google Scholar 

  • Young DA, Bauer CE, Williams JC and Marrs BL (1989) Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment binding proteins in Rhodobacter capsulatus. Mol Gen Genet 218: 1–12

    Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37: 949–957

    Article  PubMed  Google Scholar 

  • Zuber H (1987) The structure of light-harvesting pigment-protein complexes. In: Barber J (ed) The Light Reactions, pp 197–259. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfield PR and Bottomley W (1982) Nucleotide sequence of the gene for the Mr 32 000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved translation product of 38 950. Proc Natl Acad Sci USA 79: 7699–7703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blankenship, R.E. Origin and early evolution of photosynthesis. Photosynth Res 33, 91–111 (1992). https://doi.org/10.1007/BF00039173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039173

Key words

Navigation