Skip to main content
Log in

Metabolism of homoacetogens

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Homoacetogenic bacteria are strictly anaerobic microorganisms that catalyze the formation of acetate from C1 units in their energy metabolism. Most of these organisms are able to grow at the expense of hydrogen plus CO2 as the sole energy source. Hydrogen then serves as the electron donor for CO2 reduction to acetate. The methyl group of acetate is formed from CO2 via formate and reduced C1 intermediates bound to tetrahydrofolate. The carboxyl group is derived from carbon monoxide, which is synthesized from CO2 by carbon monoxide dehydrogenase. The latter enzyme also catalyzes the formation of acetyl-CoA from the methyl group plus CO. Acetyl-CoA is then converted either to acetate in the catabolism or to cell carbon in the anabolism of the bacteria. The homoacetogens are very versatile anaerobes, which convert a variety of different substrates to acetate as the major end product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamse AD (1980) New isolation ofClostridium aceticum (Wieringa). Antonie van Leeuwenhoek J. Microbiol. Serol. 46: 523–531

    Google Scholar 

  • Andreesen JR & Ljungdahl LG (1974) Nicotinamide adenine dinucleotide phosphate dependent formate dehydrogenase fromClostridium thermoaceticum: Purification and properties. J. Bacteriol. 120: 6–14

    Google Scholar 

  • Bache R & Pfennig N (1981) Selective isolation ofAcetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130: 255–261

    Google Scholar 

  • Bak F, Finster K & Rothfuß F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol. 157: 529–534

    Google Scholar 

  • Balch WE, Schoberth S, Tanner RS & Wolfe RS (1977)Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Sys. Bacteriol. 27: 355–361

    Google Scholar 

  • Barker HA & Kamen MD (1945) Carbon dioxide utilization in the synthesis of acetic acid byClostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 31: 219–225

    Google Scholar 

  • Bastian NR, Diekert G, Niederhoffer EC, Teo BK, Walsh CT & Orme-Johnson WH (1988) Nickel and iron EXAFS of carbon monoxide dehydrogenase fromClostridium thermoaceticum strain DSM. J. Am. Chem. Soc. 110: 5581–5582

    Google Scholar 

  • Becher B, Müller V & Gottschalk G (1992) The methyltetrahydromethanopterin:coenzyme M methyltransferase ofMethanosarcina strain Göl is a primary sodium pump. FEMS Microbiol. Lett. 91: 239–244

    Google Scholar 

  • Berman MH & Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58: 925–931

    Google Scholar 

  • Braun M, Mayer F & Gottschalk G (1981)Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128: 288–293

    Google Scholar 

  • Breznak JA (1992) The genusSporomusa. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes, vol 1 (pp 517–533). Springer-Verlag, New York

    Google Scholar 

  • Clark JE & Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein fromClostridium formicoaceticum. J. Biol. Chem. 259: 10845–10849

    Google Scholar 

  • Daniel SL & Drake HL (1993) Oxalate- and glyoxylate-dependent growth and acetogenesis byClostridium thermoaceticum. Appl. Environ. Microbiol. 59: 3062–3069

    Google Scholar 

  • Daniel SL, Keith ES, Yang H, Lin YS & Drake HL (1991) Utilization of methoxylated aromatic compounds by the acetogenClostridium thermoaceticum: expression and specificity of the CO-dependent O-demethylating activity. Biochem. Biophys. Res. Comm. 180: 416–422

    Google Scholar 

  • Daniel SL, Wu Z & Drake HL (1988) Growth of thermophilic acetogenic bacteria on methoxylated aromatic acids. FEMS Microbiol. Lett. 52: 25–28

    Google Scholar 

  • Diekert G (1992) The acetogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes, vol 1 (pp 517–533). Springer-Verlag, New York

    Google Scholar 

  • Diekert GB, Graf EG & Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation inClostridium pasteurianum. Arch. Microbiol. 122: 117–120

    Google Scholar 

  • Diekert G, Hansch M & Conrad R (1984) Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch. Microbiol. 138: 224–228

    Google Scholar 

  • Diekert G & Ritter M (1983) Purification of the nickel protein carbon monoxide dehydrogenase ofClostridium thermoaceticum. FEBS Lett. 151: 41–44

    Google Scholar 

  • Diekert G, Schrader E & Harder W (1986) Energetics of CO formation and CO oxidation in cell suspensions ofAcetobacterium woodii. Arch. Microbiol. 144: 386–392

    Google Scholar 

  • Diekert G & Thauer RK (1978) Carbon monoxide oxidation byClostridium thermoaceticum andClostridium formicoaceticum. J. Bacteriol. 136: 597–606

    Google Scholar 

  • Diekert G & Thauer RK (1980) The effect of nickel on carbon monoxide dehydrogenase formation inClostridium thermoaceticum andClostridium formicoaceticum. FEMS Microbiol. Lett. 7: 187–189

    Google Scholar 

  • Diekert G & Wohlfarth G (1994a) Energetics of acetogenesis from C1-units. In: Drake HL (Ed) Acetogenesis (in press). Chapman and Hall, New York

    Google Scholar 

  • Diekert G & Wohlfarth G (1994b) Kohlenmonoxid im Stoffwechsel strikt anaerober Bakterien. Bioengineering, 1/94: 25–32

    Google Scholar 

  • Dorn M, Andreesen JR & Gottschalk G (1978) Fermentation of fumerate and L-malate byClostridium formicoaceticum. J. Bacteriol. 133: 26–32

    Google Scholar 

  • Drake HL Hu SI, & Wood HG (1981) Purification of five components fromClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 256: 11137–11144

    Google Scholar 

  • Eichler B & Schink B (1984) Oxidation of primary aliphatic alcohols byAcetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140: 147–152

    Google Scholar 

  • Elliott JI & Ljungdahl LG (1982) Isolation and characterization of an Fe8-S8 ferredoxin (ferredoxin II) fromClostridium thermoaceticum. J. Bacteriol. 151: 328–333

    Google Scholar 

  • Ferry JG (1992) Methane from acetate. J. Bacteriol. 174: 5489–5495

    Google Scholar 

  • Fischer F, Lieske R & Winzer K (1932) Biologische Gasreaktionen, II. Mitteilung: über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem. Z. 245: 2–12

    Google Scholar 

  • Fontaine FE, Peterson WH, McCoy E & Johnson MJ (1942) A new type of glucose fermentation byClostridium thermoaceticum n. sp. J. Bacteriol. 43: 701–715

    Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39: 181–213

    Google Scholar 

  • Geerligs G, Aldrich HC, Harder W & Diekert G (1987) Isolation and characterization of a carbon monoxide utilizing strain of the acetogenPeptostreptococcus productus. Arch. Microbiol. 148: 305–313

    Google Scholar 

  • Geerligs G, Schönheit P & Diekert G (1989) Sodium dependent acetate formation from CO2 inPeptostreptococcus productus (strain Marburg). FEMS Microbiol. Lett. 57: 253–258

    Google Scholar 

  • Genthner BRS & Bryant MP (1982) Growth ofEubacterium limosum with carbon monoxide as the energy source. Appl. Environ. Microbiol. 43: 70–74

    Google Scholar 

  • Genthner BRS, Davis CL & Bryant MP (1981) Features of rumen and sewage sludge strains ofEubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42: 12–19

    Google Scholar 

  • Gottwald M, Andreesen JR, LeGall J & Ljungdahl LG (1975) Presence of cytochrome and menaquinone inClostridium formicoaceticum andClostridium thermoaceticum. J. Bacteriol. 122: 325–328

    Google Scholar 

  • Grethlein AJ, Worden RM, Jain MK & Datta R (1991) Evidence for production of n-butanol from carbon monoxide byButyribacterium methylotrophicum. J. Ferm. Bioeng. 72: 58–60

    Google Scholar 

  • Hamlett NV & Blaylock BA (1969) Synthesis of acetate from methanol. Bacteriol. Proc.: 207

  • Hansen B, Bokranz M, Schönheit P & Kröger A (1988) ATP formation coupled to caffeate reduction by H2 inAcetobacterium woodii NZval6. Arch. Microbiol. 155: 447–451

    Google Scholar 

  • Heise R, Müller V & Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacteriumAcetobacterium woodii. J. Bacteriol. 171: 5473–5478

    Google Scholar 

  • Heise R, Müller V & Gottschalk G (1992) Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacteriumAcetobacterium woodii. Eur. J. Biochem. 206: 553–557

    Google Scholar 

  • Heise R, Müller V & Gottschalk G (1993) Acetogenesis and ATP synthesis inAcetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol. Lett. 112: 261–268

    Google Scholar 

  • Heyer H, Stal L & Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacteriumOscillatoria limosa incubated anaerobically in the dark. Arch. Microbiol. 151: 558–564

    Google Scholar 

  • Hsu T, Daniel SL, Lux MF & Drake HL (1990) Biotransformations of carboxylated aromatic compounds by the acetogenClostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. Bacteriol. 172: 212–217

    Google Scholar 

  • Hugenholtz J, Ivey DM & Ljungdahl LG (1987) Carbon monoxide-driven electron transport inClostridium thermoautotrophicum membranes. J. Bacteriol. 169: 5845–5847

    Google Scholar 

  • Hugenholtz J & Ljungdahl LG (1990) Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol. Rev. 87: 383–390

    Google Scholar 

  • Kamlage B & Blaut M (1993) Isolation of a cytochrome-deficient mutant strain ofSporomusa sphaeroides not capable of oxidizing methyl groups. J. Bacteriol. 175: 3043–3050

    Google Scholar 

  • Kamlage B, Boelter A & Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in twoSporomusa species and their expression during growth on selected substrates. Arch. Microbiol. 159: 189–196

    Google Scholar 

  • Kreft JU & Schink B (1993) Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. Arch. Microbiol. 159: 308–315

    Google Scholar 

  • Kröger A, Geisler V, Lemma E, Theis F & Lenger R (1992) Bacterial fumarate respiration. Arch. Microbiol. 158: 311–314

    Google Scholar 

  • Kumar M, Lu WP, Liu L & Ragsdale SW (1993) Kinetic evidence that carbon monoxide dehydrogenase catalyzes the oxidation of carbon monoxide and the synthesis of acetyl-CoA at separate metal centers. J. Am. Chem. Soc. 115: 11646–11647

    Google Scholar 

  • Lee MJ & Zinder SH (1988a) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54: 124–129

    Google Scholar 

  • Lee MJ & Zinder SH (1988b) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch. Microbiol. 150: 513–518

    Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40: 415–450

    Google Scholar 

  • Ljungdahl LG, Brewer JM, Neece SH & Fairwell T (1970) Purification, stability, and composition of formyltetrahydrofolate synthetase fromClostridium thermoaceticum. J. Biol. Chem. 245: 4791–4797

    Google Scholar 

  • Ljungdahl LG, Irion E & Wood HG (1966) Role of corrinoids in the total synthesis of acetate from CO2 byClostridium thermoaceticum. Fed. Proc. Am. Soc. Exp. Biol. 25: 1642–1648

    Google Scholar 

  • Ljungdahl LG & Wood HG (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu. Rev. Microbiol. 23: 515–538

    Google Scholar 

  • Ljungdahl LG & Wood HG (1982) Acetate biosynthesis. In: Dolphin D (Ed) Vitamin B12 (pp 165–202). Wiley, New York

    Google Scholar 

  • Lorowitz WH & Bryant MP (1984)Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47: 961–964

    Google Scholar 

  • Ma K, Siemon S & Diekert G (1987) Carbon monoxide metabolism in cell suspensions ofPeptostreptococcus productus strain Marburg. FEMS Microbiol. Lett. 43: 367–371

    Google Scholar 

  • Margheri MC & Allotta G (1993) Homoacetic fermentation in the cyanobacteriumNostoc sp. strain Cc fromCycas circinalis. FEMS Microbiol. Lett. 111: 213–218

    Google Scholar 

  • Matthies C, Freiberger A & Drake HL (1993) Fumarate dissimilation and differential reductant flow byClostridium formicoaceticum andClostridium aceticum. Arch. Microbiol. 160: 273–278

    Google Scholar 

  • Meßmer M, Wohlfarth G & Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch. Microbiol. 160: 383–387

    Google Scholar 

  • Möller B, Ossmer R, Howard BH, Gottschalk G & Hippe H (1984)Sporomusa, a new genus of gram-negative anaerobic bacteria includingSporomusa sphaeroides spec. nov. andSporomusa ovata spec. nov. Arch. Microbiol. 139: 388–396

    Google Scholar 

  • Moore MR, O'Brien WE & Ljungdahl LG (1974) Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase fromClostridium formicoaceticum. J. Biol. Chem. 249: 5250–5253

    Google Scholar 

  • O'Brien WE, Brewer JM & Ljungdahl LG (1973) Purification and characterization of thermostable, 5,10-methylenetetrahydrofolate dehydrogenase fromClostridium thermoaceticum. J. Biol. Chem. 248: 403–408

    Google Scholar 

  • Plugge CM, Dijkema C & Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol. Lett. 110: 71–76

    Google Scholar 

  • Poston JM, Kuratomi K & Stadtman ER (1964) Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts ofClostridium thermoaceticum. Ann. N.Y. Acad. Sci. 112: 804–806

    Google Scholar 

  • Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26: 261–300

    Google Scholar 

  • Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL & Drake HL (1983a) Properties of purified carbon monoxide dehydrogenase fromClostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258: 2364–2369

    Google Scholar 

  • Ragsdale SW, Lindahl PA & Münck E (1987) Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A byClostridium thermoaceticum. J. Biol. Chem 262: 14289–14297

    Google Scholar 

  • Ragsdale SW, Ljungdahl LG & der Vartanian DV (1983b) Isolation of carbon monoxide dehydrogenase fromAcetobacterium woodii and comparison of its properties with those of theClostridium thermoaceticum enzyme. J. Bacteriol. 155: 1224–1237

    Google Scholar 

  • Ragsdale SW, Wood HG & Antholine WE (1985) Evidence that an iron-nickel-carbon complex is formed by reaction of CO with CO dehydrogenase fromClostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 82: 6811–6814

    Google Scholar 

  • Reubelt U, Wohlfarth G, Schmid R & Diekert G (1991) Purification and characterization of ferredoxin fromPeptostreptococcus productus (strain Marburg). Arch. Microbiol. 156: 422–426

    Google Scholar 

  • Roberts JR, Lu WP & Ragsdale SW (1992) Acetyl-coenzyme-A synthesis from methyl-tetrahydrofolate, CO, and coenzyme-A by enzymes purified fromClostridium thermoaceticum — attainment ofin vivo rates and identification of rate-limiting steps. J. Bacteriol. 174: 4667–4676

    Google Scholar 

  • Schramm E & Schink B (1991) Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a newAcetobacterium sp. Biodeg. 2: 71–79

    Google Scholar 

  • Schulman M, Ghambeer RK, Ljungdahl LG & Wood HG (1973) Total synthesis of acetate from CO2. VII. Evidence withClostridium thermoaceticum that the carboxyl group of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248: 6255–6261

    Google Scholar 

  • Schuppert B & Schink B (1990) Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains ofAcetobacterium sp. Arch. Microbiol. 153: 200–204

    Google Scholar 

  • Seifritz C, Daniel SL, Gößner A & Drake HL (1993) Nitrate as a preferred electron sink for the acetogenClostridium thermoaceticum. J. Bacteriol. 175: 8008–8013

    Google Scholar 

  • Shin W, Anderson ME & Lindahl PA (1993) Heterogenous nickel environments in carbon monoxide dehydrogenase fromClostridium thermoaceticum. J. Am. Chem. Soc. 115: 5522–5526

    Google Scholar 

  • Stupperich E & Konle R (1993) Corrinoid-dependentmethyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism bySporomusa ovata. Appl. Environ. Microbiol. 59: 3110–3116

    Google Scholar 

  • Tananka K & Pfennig N (1988) Fermentation of 2-methoxyethanol byAcetobacterium malicum sp. nov. andPelobacter venetianus. Arch. Microbiol. 149: 181–187

    Google Scholar 

  • Tanner RS, Miller LM & Yang D (1993)Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Sys. Bacteriol. 43: 232–236

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Thauer RK, Möller-Zinkhan D & Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann. Rev. Microbiol. 43: 43–67

    Google Scholar 

  • Traunecker J, Preuß A & Diekert G (1991) Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421

    Google Scholar 

  • Tschech A & Pfennig N (1984) Growth yield increase linked to caffeate reduction inAcetobacterium woodii. Arch. Microbiol. 137: 163–167

    Google Scholar 

  • Van der Meijden P, van der Drift C & Vogels GD (1984) Methanol conversion inEubacterium limosum. Arch. Microbiol. 138: 360–364

    Google Scholar 

  • Wagener S & Schink B (1988) Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54: 561–565

    Google Scholar 

  • Whitman WB, Bowen TL & Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes, vol 1 (pp 719–767). Springer-Verlag, New York

    Google Scholar 

  • Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden; voortzetting van een onderzoek van wijlen Prof. Dr. Ir. N.L. Söhngen. Antonie van Leeuwenhoek J. Microbiol. Serol. 3: 263–273

    Google Scholar 

  • Winters DK & Ljungdahl LG (1989) PQQ-dependent methanol dehydrogenase fromClostridium thermoautotrophicum. In: Jongejan JA & Duine JA (Eds) PQQ and quinoproteins (pp 35–39). Kluwer Academic Publishers, Dordrecht Boston London

    Google Scholar 

  • Wohlfarth G & Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch. Microbiol. 155: 378–381

    Google Scholar 

  • Wohlfarth G, Geerligs G & Diekert G (1990) Purification and properties of a NADH dependent 5,10-methylenetetrahydrofolate reductase fromPeptostreptococcus productus. Eur. J. Biochem. 192: 411–417

    Google Scholar 

  • Wood HG (1952) A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194: 905–931

    Google Scholar 

  • Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5: 156–163

    Google Scholar 

  • Yang H & Drake HL (1990) Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacteriumAcetogenium kivui. Appl. Environ. Microbiol. 56: 81–86

    Google Scholar 

  • Zeikus JG, Lynd LH, Thompson TE, Krzycki JA, Weimer PJ & Hegge PW (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3: 381–386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekert, G., Wohlfarth, G. Metabolism of homoacetogens. Antonie van Leeuwenhoek 66, 209–221 (1994). https://doi.org/10.1007/BF00871640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871640

Key words

Navigation