Skip to main content
Log in

Lithotrophic growth ofSulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5±0.2 g mol−1 for the reduction of nitrate to ammonia. By this type of metabolism,S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity inS. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

<S 0}:

Biogenic elemental sulfur

S 8R :

Crystalline elemental sulfur

References

  • Abou-Jaoudé A, Chippaux M, Pascal MC (1979) Formate-nitrite reduction inEscherichia coli K12. 1. Physiological study of the system. Eur J Biochem 95:309–314

    Article  PubMed  Google Scholar 

  • Aminuddin M, Nicholas DJD (1973) Sulphide oxidation linked to the reduction of nitrate and nitrite inThiobacillus denitrificans, Biochim Biophys Acta 325:81–93

    Article  PubMed  CAS  Google Scholar 

  • Bokranz MJ, Katz J, Schröder I, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis ofVibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135:36–41

    Article  CAS  Google Scholar 

  • Boltz DF, Taras MJ (1978) Nitrogen. In: Boltz DF, Howell JA (eds) Colorimetric determination of nonmetals. Chemical analysis, vol 8. Wiley, New York, pp 197–251

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Collins MD, Widdel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Sustem Appl Microbiol 8:8–18

    CAS  Google Scholar 

  • Dalsgaard T, Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium,Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol 60:291–297

    PubMed  CAS  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  • De Vries W, Niekus HGD, Boellaard M, Stouthamer AH (1980) Growth yields and energy generation byCampylobacter sputorum subspeciesbubulus during growth in continuous culture with different hydrogen acceptors. Arch Microbiol 124:221–227

    Article  PubMed  Google Scholar 

  • Fauque G, Herve D, LeGall J (1979) Structure-function relationships in hemoproteins: the role of cytochromec 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol 121:261–264

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers PM, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur inDesulfuromonas acetoxidans. Arch Microbiol 141:392–398

    Article  CAS  Google Scholar 

  • Janek A (1933) Ein neues Verfahren zur Herstellung von Schwefelsolen. Kolloid Z 64:31–32

    Article  CAS  Google Scholar 

  • King D, Nedwell DB (1985) The influence of nitrate concentration upon the end product of nitrate dissimilation by bacteria in anaerobic salt marsh sediment. FEMS Microbiol Ecol 31:23–28

    Article  CAS  Google Scholar 

  • King D, Nedwell DB (1987) The adaptation of nitrate-reducing bacterial communities in estuarine sediments in response to overlying nitrate load. FEMS Microbiol Ecol 45:15–20

    Article  CAS  Google Scholar 

  • Kreis-Kleinschmidt V, Fahrenholz F, Kojro E, Kröger A (1995) Periplasmic sulphide dehydrogenase (Sud) fromWolinella succinogenes: isolation, nucleotide sequence of thesud gene and its expression inEscherichia coli. Eur J Biochem 227:137–142

    Article  PubMed  CAS  Google Scholar 

  • Lang E, Lang H (1972) Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z Anal Chem 260:8–10

    Article  CAS  Google Scholar 

  • Laudenbach DE, Ehrhardt D, Green L, Grossman A (1991) Isolation of a sulfur-regulated gene encoding a periplasmically localized protein with sequence similarity to rhodanese. J Bacteriol 173:2751–2760

    PubMed  CAS  Google Scholar 

  • Ma K, Adams MWW (1994) Sulfide dehydrogenase from the hyperthermophilic archaeonPyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J Bacteriol 176:6509–6517

    PubMed  CAS  Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth ofWolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150

    Article  CAS  Google Scholar 

  • Murray RE, Parsons LL, Smith MS (1989) Kinetics of nitrate utilization by mixed populations of denitrifying bacteria. Appl Environ Microbiol 55:717–721

    PubMed  CAS  Google Scholar 

  • Schumacher W, Kroneck PMH (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia. Arch Microbiol 157:464–470

    Article  CAS  Google Scholar 

  • Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175,Campylobacter andWolinella species. Description of “Spirillum” 5175 asSulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158:287–293

    Article  CAS  Google Scholar 

  • Schumacher W, Hole U, Kroneck PMH (1994) Ammonia-forming cytochromec nitrite reductase fromSulfurospirillum deleyianum is a tetraheme protein: new aspects of the molecular composition and spectroscopic properties. Biochem Biophys Res Commun 205:911–916

    Article  PubMed  CAS  Google Scholar 

  • Seitz HJ, Cypionka H (1986) Chemolithotrophic growth ofDesulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146:63–67

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Umbreit WW, Burris RH, Stauffer JF (1972) Manometric and biochemical techniques. Burgess, Minneapolis

    Google Scholar 

  • Wolfe RS, Pfennig N (1977) Reduction of sulfur by spirillum 5175 and syntrophism withChlorobium. Appl Environ Microbiol 33:427–433

    PubMed  CAS  Google Scholar 

  • Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1988) Investigations on microbial sulfur respiration. 1. Activation and reduction of elemental sulfur in several strains of eubacteria. Arch Microbiol 150:72–77

    Article  Google Scholar 

  • Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1991) Investigations on microbial sulfur respiration. 2. Isolation, purification, and characterization of cellular components from Spirillum 5175. Eur J Biochem 195:849–856

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Schumacher.

Additional information

Dedicated to Prof. Norbert Pfennig on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenmann, E., Beuerle, J., Sulger, K. et al. Lithotrophic growth ofSulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch. Microbiol. 164, 180–185 (1995). https://doi.org/10.1007/BF02529969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529969

Key words

Navigation