Skip to main content
Log in

Capacity of chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The capacity for chemoautotrophic, mixotrophic and organotrophic growth in the dark was tested with 45 strains of 17 species (11 genera) of the Chromatiaceae. The auxanographic deep agar shake culture method was used; the gas phase contained 5% O2 and 1% CO2 in N2. All strains tested of Chromatium vinosum, C. minus, C. violascens, C. gracile, Thiocystis violacea, Amoebobacter roseus, Thiocapsa roseopersicina gave positive growth responses under chemoautotrophic and mixotrophic conditions (extra carbon source acetate); one strain of Thiocapsa roseopersicina grew also organotrophically on acetate alone. No growth was obtained with the remaining 17 strains of ten species. None of the five type species (three genera) of the Chlorobiaceae grew under chemotrophic conditions. With Thiocystis violacea 2311 a growth yield of 11.3g dry weight per mol thiosulfate consumed was obtained under chemoautotrophic conditions; under mixotrophic conditions with acetate the yield increased to 69g dry weight per mol thiosulfate consumed. With Thiocystis violacea 2311 maximal specific respiration rates were obtained with thiosulfate as electron donor irrespective of the presence or absence of sulfur globules in the cells; organic substrates served as carbon sources only and did not support respiration. With Chromatium vinosum D utilization of thiosulfate was not constitutive; maximal respiration rates on thiosulfate were obtained only with thiosulfate grown cells containing sulfur globules. Respiration rates were further increased by malate, fumarate or propionate; these substrates also served as sole electron donors for respiration. Acetate and pyruvate were used as carbon sources only. The ecological significance of the chemotrophic metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badziong, W., Thauer, R. K., Zeikus, J. G.: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116, 41–50 (1978)

    Google Scholar 

  • Biebl, H., Pfennig, N.: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117, 9–16 (1978)

    Google Scholar 

  • Bogorov, L. V.: About the properties of Thiocapsa roseopersicina strain BBS, isolated from the estuary of the White Sea. Microbiologiya 43, 326–332 (1974)

    Google Scholar 

  • Breuker, E.: Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Dunkelstoffwechsel. Zbl. Bakt., II. Abt. 118, 561–579 (1964)

    Google Scholar 

  • Cohn, E. G.: Behaviour of Vibrio fetus in relation to O2. Universidad do Brasil, Rio de Janeiro. An. Microbiol. 10, 147–171 (1962)

    Google Scholar 

  • Dijken, I. P. van, Harder, W.: Growth yields of microorganisms on methanol and methane: A theoretical study. Biotechnol. Bioeng. 17, 15–30 (1975)

    Google Scholar 

  • Drews, G., Lampe, H.-H., Ladwig, R.: Die Entwicklung des Photosyntheseapparates von Rhodopseudomonas capsulata. Arch. Mikrobiol. 65, 12–28 (1969)

    Google Scholar 

  • Fredette, V., Planté, C., Roy, A.: Numerical data concerning the sensitivity of anaerobic bacteria to oxygen. J. Bacteriol. 94, 2012–2017 (1967)

    Google Scholar 

  • Gemerden, H. van: On the ATP generation by Chromatium in darkness. Arch. Mikrobiol. 64, 118–124 (1968)

    Google Scholar 

  • Gibson, J.: Aerobic metabolism of Chromatium sp. strain D. Arch. Mikrobiol. 59, 104–112 (1967)

    Google Scholar 

  • Göbel, F.: Direct measurements of pure absorbance spectra of living phototrophic microorganisms. Biochim. Biophys. Acta (Amst.) 538, 593–602 (1978)

    Google Scholar 

  • Gorlenko, V. M.: The oxidation of thiosulfate of Amoebobacter roseus in the dark under microaerophilic conditions. Mikrobiologiya 43, 729–731 (1974)

    Google Scholar 

  • Hempfling, W. P., Vishniac, W.: Yield coefficients of Thiobacillus neapolitanus in continuous culture. J. Bacteriol. 93, 874–878 (1967)

    Google Scholar 

  • Hurlbert, R. E.: Effect of oxygen on viability and substrate utilization in Chromatium. J. Bacteriol. 93, 1346–1352 (1967)

    Google Scholar 

  • Justin, P., Kelly, D. P.: Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J. Gen. Microbiol. 107, 123–130 (1978)

    Google Scholar 

  • Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu. P., Monosov, E. Z.: The capacity of phototrophic sulfur bacterium Thiocopsa roseopersicina for chemosynthesis. Arch. Microbiol. 108, 287–292 (1976)

    Google Scholar 

  • Niel, C. B. van: The bacterial photosynthesis and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1, 263–328 (1941)

    Google Scholar 

  • Pfennig, N.: Dark growth phototrophic bacteria under microaerophilic conditions. J. Gen. Microbiol. 61, ii-iii (1970)

    Google Scholar 

  • Pfennig, N.: The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43, 1–16 (1975)

    Google Scholar 

  • Pfennig, N., Siefert, E.: Metabolism of C1-compounds by Rhodopseudomonas acidophila. In: Abstracts of the Second International Symposium “Microbial growth on C1-compounds”, pp. 146–147. Pushchino, USSR, 1977

  • Pfennig, N.: General physiology and ecology of photosynthetic bacteria. In: The photosynthetic bacteria (Clayton, R. C., Sistrom, W. R., eds.), pp. 3–18, New York: Plenum Press 1978

    Google Scholar 

  • Siefert, E.: Aerobes Wachstum von Rhodopseudomonas mit Wasserstoff oder Methanol im Dunkeln. Zbl. Bakt. Hyg., I. Abt. Ref. 256, 409 (1978)

    Google Scholar 

  • Siefert, E., Irgens, R. L., Pfennig, N.: Phototrophic purple and green bacteria in a sewage treatment plant. Appl. Environ. Microbiol. 35, 38–44 (1978)

    Google Scholar 

  • Siefert, E., Pfennig, N.: Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch. Microbiol. 122, 177–182 (1979)

    Google Scholar 

  • Smith, A. J., Lascelles, J.: Thiosulfate metabolism and rhodanese in Chromatium D. J. Gen. Microbiol. 42, 357–370 (1966)

    Google Scholar 

  • Sorokin, Yu. I.: Role of carbon dioxide and acetate in biosynthesis of sulfate reducing bacteria. Nature (Lond.) 210, 551–552 (1966)

    Google Scholar 

  • Sorokin, Yu. I.: Interrelations between sulfur and carbon turnover in meromictio lakes. Arch. Hydrobiol. 66, 391–446 (1970)

    Google Scholar 

  • Thiele, H. H.: Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Arch. Mikrobiol. 60, 124–138 (1968)

    Google Scholar 

  • Vries, H. de, Stouthamer, A. H.: Factors determing the degree of anaerobiosis of Bifidobacterium strains. Arch. Mikrobiol. 65, 275–287 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampf, C., Pfennig, N. Capacity of chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum . Arch. Microbiol. 127, 125–135 (1980). https://doi.org/10.1007/BF00428016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428016

Key words

Navigation