Skip to main content
Log in

Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis is a [NiFe] hydrogenase composed of the three subunits MvhA, MvhG, and MvhD. Subunits MvhA and MvhG form the basic hydrogenase module conserved in all [NiFe] hydrogenases, whereas the 17-kDa MvhD subunit is unique to Mvh. The function of this extra subunit is completely unknown. In this work, the physiological function of this hydrogenase, and in particular the role of the MvhD subunit, is addressed. In cells of Mt. marburgensis from Ni2+-limited chemostat cultures the amount of Mvh decreased about 70-fold. However, the amounts of mvh transcripts did not decrease in these cells as shown by competitive RT-PCR, arguing against a regulation at the level of transcription. In cells grown in the presence of non-limiting amounts of Ni2+, Mvh was found in two chromatographically distinct forms—a free form and in a complex with heterodisulfide reductase. In cells from Ni2+-limited chemostat cultures, Mvh was only found in a complex with heterodisulfide reductase. The EPR spectrum of the purified enzyme reduced with sodium dithionite was dominated by a signal with g zyx =2.006, 1.936 and 1.912. The signal could be observed at temperatures up to 80 K without broadening, indicative of a [2Fe–2S] cluster. Subunit MvhD contains five cysteine residues that are conserved in MvhD homologues of other organisms. Four of these conserved cysteine residues can be assumed to coordinate the [2Fe–2S] cluster that was detected by EPR spectroscopy. The MvhG subunit contains 12 cysteine residues, which are known to ligate three [4Fe–4S] clusters. Data base searches revealed that in some organisms, including the Methanosarcina species and Archaeoglobus fulgidus, a homologue of mvhD is fused to the 3′ end of an hdrA homologue, which encodes a subunit of heterodisulfide reductase. These data allow the conclusion that the only function of Mvh is to provide reducing equivalents for heterodisulfide reductase and that the MvhD subunit is an electron transfer protein that forms the contact site to heterodisulfide reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a, b.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

Eha :

Energy-converting hydrogenase A

Ehb :

Energy-converting hydrogenase B

Frh :

F420-reducing hydrogenase

Mvh :

F420-non-reducing hydrogenase from Methanothermobacter

Vhc, Vhu :

F420-non-reducing hydrogenases from Methanococcus voltae

Hdr :

Heterodisulfide reductase

Hmd :

H2-forming N 5, N 10methylenetetrahydromethanopterin dehydrogenase

Mc. :

Methanococcus

Mp. :

Methanopyrus

Ms. :

Methanosarcina

Mt. :

Methanothermobacter

References

  • Afting C, Kremmer E, Brucker C, Hochheimer A, Thauer RK (2000) Transcriptional regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of Hmd2 and Hmd3 in Methanothermobacter marburgensis. Arch Microbiol 174:225–232

    Article  CAS  PubMed  Google Scholar 

  • Alex LA, Reeve JN, Orme-Johnson WH, Walsh CT (1990) Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum ΔH. Biochemistry 29:7237–7244

    CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    CAS  PubMed  Google Scholar 

  • Deppenmeier U, Blaut M, Gottschalk G (1991) H2: heterodisulfide oxidoreductase a second energy-conserving system in the methanogenic strain Gö1. Arch Microbiol 155:272–277

    CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bomeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394

    CAS  PubMed  Google Scholar 

  • Fox JA, Livingston DJ, Orme-Johnson WH, Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization. Biochemistry 26:4219–4227

    CAS  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  CAS  PubMed  Google Scholar 

  • Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure Fold Des 7:557–566

    CAS  PubMed  Google Scholar 

  • Hedderich R, Albracht SPJ, Linder D, Koch J, Thauer RK (1992) Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum. The mvhB gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett 298:65–68

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671–1680

    CAS  PubMed  Google Scholar 

  • Künkel A, Vaupel M, Heim S, Thauer RK, Hedderich R (1997) Heterodisulfide reductase from methanol-grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur J Biochem 244:226–234

    PubMed  Google Scholar 

  • Madadi-Kahkesh S, Duin EC, Heim S, Albracht SP, Johnson MK, Hedderich R (2001) A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea. Eur J Biochem 268:2566–2577.

    Article  CAS  PubMed  Google Scholar 

  • Magalon A, Böck A (2000) Analysis of the HypC-hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 275:21114–21120

    CAS  PubMed  Google Scholar 

  • Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Ä and modelling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem 6:63–81

    PubMed  Google Scholar 

  • Morgan RM, Pihl TD, Nölling J, Reeve JN (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum ΔH. J Bacteriol 179:889–898

    CAS  PubMed  Google Scholar 

  • Nogueira T, Springer M (2000) Post-transcriptional control by global regulators of gene expression in bacteria. Curr Opin Microbiol 3:154–158

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer M, Bestgen H, Burger A, Klein A (1998) The vhuU gene encoding a small subunit of a selenium-containing [NiFe]-hydrogenase in Methanococcus voltae appears to be essential for the cell. Arch Microbiol 170:418–426

    Article  CAS  PubMed  Google Scholar 

  • Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW, Krzycki JA, Kolodziej AF, Alex L, Orme-Johnson WH, Walsh CT (1989) A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc Natl Acad Sci U S A 86:3031–3035

    CAS  PubMed  Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (KS, µ max, YS) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65.

    Google Scholar 

  • Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155:459–465

    Google Scholar 

  • Setzke E, Hedderich R, Heiden S, Thauer RK (1994) H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur J Biochem 220:139–148

    CAS  PubMed  Google Scholar 

  • Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, Belova GI, Aravind L, Natale DA, Rogozin IB, Tatusov RL, Wolf YI, Stetter KO, Malykh AG, Koonin EV, Kozyavkin SA (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    CAS  PubMed  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Tersteegen A, Hedderich R (1999) Methanobacterium thermoautotrophicum encodes two multi-subunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 264:930–943

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    PubMed  Google Scholar 

  • Thauer RK, Hedderich R, Fischer R (1993) Biochemistry. Reactions and enzymes involved in methanogenesis from CO2 and H2. In: Ferry JG (ed) Methanogenesis. Chapman and Hall, New York, pp 209–252

  • Thauer RK, Klein AR, Hartmann GC (1996) Reactions with molecular hydrogen in microorganisms. Evidence for a purely organic hydrogenation catalyst. Chem Rev 96:3031–3042

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    CAS  PubMed  Google Scholar 

  • Von Bünau R, Zirngibl C, Thauer RK, Klein A (1991) Hydrogen-forming and coenzyme-F420-reducing methylene tetrahydromethanopterin dehydrogenase are genetically distinct enzymes in Methanobacterium thermoautotrophicum (Marburg). Eur J Biochem 202:1205–1208

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft, by the Deutsche Forschungsgemeinschaft, and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Hedderich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stojanowic, A., Mander, G.J., Duin, E.C. et al. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis . Arch Microbiol 180, 194–203 (2003). https://doi.org/10.1007/s00203-003-0577-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0577-9

Keywords

Navigation