Skip to main content
Log in

Yeast Hosts for the Production of Recombinant Laccases: A Review

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoshida, H. (1883). Chemistry of lacquer (urushi). Journal of the Chemical Society, 43, 472–486.

    Article  CAS  Google Scholar 

  2. Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology-Sgm, 140, 19–26.

    Article  CAS  Google Scholar 

  3. Kramer, K. J., Kanost, M. R., Hopkins, T. L., Jiang, H. B., Zhu, Y. C., Xu, R. D., et al. (2001). Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 57, 385–392.

    Article  CAS  Google Scholar 

  4. Claus, H. (2003). Laccases and their occurrence in prokaryotes. Archives of Microbiology, 179, 145–150.

    CAS  Google Scholar 

  5. Mayer, A. M., & Staples, R. C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60, 551–565.

    Article  CAS  Google Scholar 

  6. Kataoka, K., Komori, H., Ueki, Y., Konno, Y., Kamitaka, Y., Kurose, S., et al. (2007). Structure and function of the engineered multicopper oxidase CueO from Escherichia coli: deletion of the methionine-rich helical region covering the substrate-binding site. Journal of Molecular Biology, 373, 141–152.

    Article  CAS  Google Scholar 

  7. Singh, S. K., Grass, G., Rensing, C., & Montfort, W. R. (2004). Cuprous oxidase activity of CueO from Escherichia coli. Journal of Bacteriology, 186, 7815–7817.

    Article  CAS  Google Scholar 

  8. Reiss, R., Ihssen, J., Richter, M., Eichhorn, E., Schilling, B., & Thony-Meyer, L. (2013). Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One, 8, e65633.

    Article  CAS  Google Scholar 

  9. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385.

    Article  CAS  Google Scholar 

  10. Majeau, J. A., Brar, S. K., & Tyagi, R. D. (2010). Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technology, 101, 2331–2350.

    Article  CAS  Google Scholar 

  11. Riva, S. (2006). Laccases: Blue enzymes for green chemistry. Trends in Biotechnology, 24, 219–226.

    Article  CAS  Google Scholar 

  12. Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poutou-Pinales, R. A., Pedroza-Rodriguez, A. M., Rodriguez-Vazquez, R., & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27, 67–82.

    Article  Google Scholar 

  13. Kallio, J. P., Gasparetti, C., Andberg, M., Boer, H., Koivula, A., Kruus, K., et al. (2011). Crystal structure of an ascomycete fungal laccase from Thielavia arenaria: Common structural features of asco-laccases. The FEBS Journal, 278, 2283–2295.

    Article  CAS  Google Scholar 

  14. Baldrian, P. (2006). Fungal laccases: Occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  Google Scholar 

  15. Piscitelli, A., Pezzella, C., Giardina, P., Faraco, V., & Sannia, G. (2010). Heterologous laccase production and its role in industrial applications. Bioengineered Bugs, 1, 252–262.

    Article  Google Scholar 

  16. Call, H. P., & Mucke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym(R)-process). Journal of Biotechnology, 53, 163–202.

    Article  CAS  Google Scholar 

  17. Canas, A. I., & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnology Advances, 28, 694–705.

    Article  CAS  Google Scholar 

  18. Chhabra, M., Mishra, S., & Sreekrishnan, T. R. (2008). Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase. Applied Biochemistry and Biotechnology, 151, 587–598.

    Article  CAS  Google Scholar 

  19. Camarero, S., Ibarra, D., Martinez, M. J., & Martinez, A. T. (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology, 71, 1775–1784.

    Article  CAS  Google Scholar 

  20. Couto, S. R., & Herrera, J. L. T. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24, 500–513.

    Article  CAS  Google Scholar 

  21. Witayakran, S., & Ragauskas, A. J. (2009). Synthetic applications of laccase in green chemistry. Advanced Synthesis & Catalysis, 351, 1187–1209.

    Article  CAS  Google Scholar 

  22. Viikari, L. J. B., & Kruus, K. (1999). Method for modification of cellulose. Patent number WO 99/23117.

  23. Viikari, L., Niku-Paavola, M., Buchert, J., Forssell, P., Teleman, A., & Kruus, K. (1999). Method of producing oxidized starch. Patent number WO 99/23240.

  24. Jetten, J. M., vandenDool, R. T. M., vanHartingsveldt, W., & Besemer, A. C. (2000). Process for selective oxidation of cellulose. Patent number WO 00/50463.

  25. Lavazza, M., Formantici, C., Langella, V., Monti, D., Pfeiffer, U., & Galante, Y. M. (2011). Oxidation of galactomannan by laccase plus TEMPO yields an elastic gel. Journal of Biotechnology, 156, 108–116.

    Article  CAS  Google Scholar 

  26. Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme Research, 2014, 163242.

    Article  CAS  Google Scholar 

  27. Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96, 2563–2606.

    Article  CAS  Google Scholar 

  28. Colao, M. C., Lupino, S., Garzillo, A. M., Buonocore, V., & Ruzzi, M. (2006). Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microbial Cell Factories, 5, 31.

    Article  CAS  Google Scholar 

  29. Autore, F., Del Vecchio, C., Fraternali, F., Giardina, P., Sannia, G., & Faraco, V. (2009). Molecular determinants of peculiar properties of a Pleurotus ostreatus laccase: Analysis by site-directed mutagenesis. Enzyme and Microbial Technology, 45, 507–513.

    Article  CAS  Google Scholar 

  30. Bulter, T., Alcalde, M., Sieber, V., Meinhold, P., Schlachtbauer, C., & Arnold, F. H. (2003). Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Applied and Environmental Microbiology, 69, 987–995.

    Article  CAS  Google Scholar 

  31. Cusano, A. M., Mekmouche, Y., Meglecz, E., & Tron, T. (2009). Plasticity of laccase generated by homologous recombination in yeast. The FEBS Journal, 276, 5471–5480.

    Article  CAS  Google Scholar 

  32. Uthandi, S., Saad, B., Humbard, M. A., & Maupin-Furlow, J. A. (2010). LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Applied and Environmental Microbiology, 76, 733–743.

    Article  CAS  Google Scholar 

  33. Ihssen, J., Reiss, R., Luchsinger, R., Thony-Meyer, L., & Richter, M. (2015). Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 5, 10465.

    Article  CAS  Google Scholar 

  34. Durao, P., Chen, Z., Fernandes, A. T., Hildebrandt, P., Murgida, D. H., Todorovic, S., et al. (2008). Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. Journal of Biological Inorganic Chemistry, 13, 183–193.

    Article  CAS  Google Scholar 

  35. Koschorreck, K., Richter, S. M., Ene, A. B., Roduner, E., Schmid, R. D., & Urlacher, V. B. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79, 217–224.

    Article  CAS  Google Scholar 

  36. Dube, E., Shareck, F., Hurtubise, Y., Daneault, C., & Beauregard, M. (2008). Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Applied Microbiology and Biotechnology, 79, 597–603.

    Article  CAS  Google Scholar 

  37. Tellez-Jurado, A., Arana-Cuenca, A., Becerra, A. E. G., Viniegra-Gonzalez, G., & Loera, O. (2006). Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme and Microbial Technology, 38, 665–669.

    Article  CAS  Google Scholar 

  38. Hatamoto, O., Sekine, H., Nakano, E., & Abe, K. (1999). Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Bioscience, Biotechnology, and Biochemistry, 63, 58–64.

    Article  CAS  Google Scholar 

  39. Yaver, D. S., Overjero, M. D., Xu, F., Nelson, B. A., Brown, K. M., Halkier, T., et al. (1999). Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Applied and Environmental Microbiology, 65, 4943–4948.

    CAS  Google Scholar 

  40. Kiiskinen, L. L., Kruus, K., Bailey, M., Ylosmaki, E., Siika-Aho, M., & Saloheimo, M. (2004). Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology, 150, 3065–3074.

    Article  CAS  Google Scholar 

  41. Bailey, M. R., Woodard, S. L., Callaway, E., Beifuss, K., Magallanes-Lundback, M., Lane, J. R., et al. (2004). Improved recovery of active recombinant laccase from maize seed. Applied Microbiology and Biotechnology, 63, 390–397.

    Article  CAS  Google Scholar 

  42. de Wilde, C., Uzan, E., Zhou, Z. Y., Kruus, K., Andberg, M., Buchert, J., et al. (2008). Transgenic rice as a novel production system for Melanocarpus and Pycnoporus laccases. Transgenic Research, 17, 515–527.

    Article  CAS  Google Scholar 

  43. Wang, G. D., Li, Q. J., Luo, B., & Chen, X. Y. (2004). Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nature Biotechnology, 22, 893–897.

    Article  CAS  Google Scholar 

  44. Sonoki, T., Kajita, S., Ikeda, S., Uesugi, M., Tatsumi, K., Katayama, Y., & Iimura, Y. (2005). Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Applied Microbiology and Biotechnology, 67, 138–142.

    Article  CAS  Google Scholar 

  45. Sakamoto, Y., Nakade, K., Yano, A., Nakagawa, Y., Hirano, T., Irie, T., et al. (2008). Heterologous expression of lcc1 from Lentinula edodes in tobacco BY-2 cells results in the production an active, secreted form of fungal laccase. Applied Microbiology and Biotechnology, 79, 971–980.

    Article  CAS  Google Scholar 

  46. Nakagawa, Y., Sakamoto, Y., Kikuchi, S., Sato, T., & Yano, A. (2010). A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases. Microbiological Research, 165, 392–401.

    Article  CAS  Google Scholar 

  47. Durao, P., Bento, I., Fernandes, A. T., Melo, E. P., Lindley, P. F., & Martins, L. O. (2006). Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Journal of Biological Inorganic Chemistry, 11, 514–526.

    Article  CAS  Google Scholar 

  48. Bento, I., Martins, L. O., Lopes, G. G., Carrondo, M. A., & Lindley, P. F. (2005). Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Transactions, (21), 3507–3513.

  49. Durao, P., Chen, Z. J., Silva, C. S., Soares, C. M., Pereira, M. M., Todorovic, S., et al. (2008). Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. The Biochemical Journal, 412, 339–346.

    Article  CAS  Google Scholar 

  50. Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T., & Ueda, K. (2003). Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry, 133, 671–677.

    Article  CAS  Google Scholar 

  51. Machczynski, M. C., Vijgenboom, E., Samyn, B., & Canters, G. W. (2004). Characterization of SLAC: A small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science, 13, 2388–2397.

    Article  CAS  Google Scholar 

  52. Martins, L. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., & Henriques, A. O. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. The Journal of Biological Chemistry, 277, 18849–18859.

    Article  CAS  Google Scholar 

  53. Ng, I. S., Zhang, X., Zhang, Y., & Lu, Y. H. (2013). Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Applied Biochemistry and Biotechnology, 169, 2223–2235.

    Article  CAS  Google Scholar 

  54. Salony, Garg, N., Baranwal, R., Chhabra, M., Mishra, S., Chaudhuri, K., & Bisaria, V. S. (2008). Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli. Biochimica and Biophysica Acta, 1784, 259–268.

    Article  CAS  Google Scholar 

  55. Sanchez-Amat, A., Lucas-Elio, P., Fernandez, E., Garcia-Borron, J. C., & Solano, F. (2001). Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochimica and Biophysica Acta, 1547, 104–116.

    Article  CAS  Google Scholar 

  56. Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., & Inamori, Y. (2003). A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression. Bioscience, Biotechnology, and Biochemistry, 67, 2167–2175.

    Article  CAS  Google Scholar 

  57. Wu, J., Kim, K. S., Lee, J. H., & Lee, Y. C. (2010). Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. Journal of Environmental Sciences (China), 22, 635–640.

    Article  CAS  Google Scholar 

  58. Brander, S., Mikkelsen, J. D., & Kepp, K. P. (2014). Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One, 9, e99402.

    Article  CAS  Google Scholar 

  59. Fathi-Roudsari, M., Behmanesh, M., Salmanian, A. H., Sadeghizadeh, M., & Khajeh, K. (2013). Substrate-dependent expression of laccase in genetically modified Escherichia coli: Design and construction of an inducible phenol-degrading system. Preparative Biochemistry & Biotechnology, 43, 456–467.

    Article  CAS  Google Scholar 

  60. Pereira, L., Coelho, A. V., Viegas, C. A., dos Santos, M. M. C., Robalo, M. P., & Martins, L. O. (2009). Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. Journal of Biotechnology, 139, 68–77.

    Article  CAS  Google Scholar 

  61. Beneyton, T., Coldren, F., Baret, J. C., Griffiths, A. D., & Taly, V. (2014). CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics. The Analyst, 139, 3314–3323.

    Article  CAS  Google Scholar 

  62. Li, Y., Yin, J., Qu, G., Lv, L., Li, Y., Yang, S., & Wang, X. G. (2008). Gene cloning, protein purification, and enzymatic properties of multicopper oxidase, from Klebsiella sp. 601. Canadian Journal of Microbiology, 54, 725–733.

    Article  CAS  Google Scholar 

  63. Feng, H., Zhang, D., Sun, Y., Zhi, Y., Mao, L., Luo, Y., et al. (2015). Expression and characterization of a recombinant laccase with alkalistable and thermostable properties from Streptomyces griseorubens JSD-1. Applied Biochemistry and Biotechnology, 176, 547–562.

    Article  CAS  Google Scholar 

  64. Nicolini, C., Bruzzese, D., Cambria, M. T., Bragazzi, N. L., & Pechkova, E. (2013). Recombinant laccase: I. Enzyme cloning and characterization. Journal of Cellular Biochemistry, 114, 599–605.

    Article  CAS  Google Scholar 

  65. Mollania, N., Khajeh, K., Ranjbar, B., Rashno, F., Akbari, N., & Fathi-Roudsari, M. (2013). An efficient in vitro refolding of recombinant bacterial laccase in Escherichia coli. Enzyme and Microbial Technology, 52, 325–330.

    Article  CAS  Google Scholar 

  66. Fang, Z., Zhou, P., Chang, F., Yin, Q., Fang, W., Yuan, J., et al. (2014). Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One, 9, e102423.

    Article  CAS  Google Scholar 

  67. Koschorreck, K., Schmid, R. D., & Urlacher, V. B. (2009). Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnology, 9, 12.

    Article  CAS  Google Scholar 

  68. Brissos, V., Pereira, L., Munteanu, F. D., Cavaco-Paulo, A., & Martins, L. O. (2009). Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnology Journal, 4, 558–563.

    Article  CAS  Google Scholar 

  69. Molina-Guijarro, J. M., Perez, J., Munoz-Dorado, J., Guillen, F., Moya, R., Hernandez, M., & Arias, M. E. (2009). Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. International Microbiology, 12, 13–21.

    CAS  Google Scholar 

  70. Nevalainen, K. M., Te’o, V. S., & Bergquist, P. L. (2005). Heterologous protein expression in filamentous fungi. Trends in Biotechnology, 23, 468–474.

    Article  CAS  Google Scholar 

  71. Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., et al. (1996). Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Applied and Environmental Microbiology, 62, 834–841.

    CAS  Google Scholar 

  72. Larrondo, L. F., Avila, M., Salas, L., Cullen, D., & Vicuna, R. (2003). Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology, 149, 1177–1182.

    Article  CAS  Google Scholar 

  73. Benghazi, L., Record, E., Suarez, A., Gomez-Vidal, J. A., Martinez, J., & de la Rubia, T. (2014). Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World Journal of Microbiology & Biotechnology, 30, 201–211.

    Article  CAS  Google Scholar 

  74. Ramos, J. A., Barends, S., Verhaert, R. M., & de Graaff, L. H. (2011). The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microbial Cell Factories, 10, 78.

    Article  CAS  Google Scholar 

  75. Tamayo-Ramos, J. A., Barends, S., de Lange, D., de Jel, A., Verhaert, R., & de Graaff, L. (2013). Enhanced production of Aspergillus niger laccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system. Biotechnology and Bioengineering, 110, 543–551.

    Article  CAS  Google Scholar 

  76. Wang, Y., Xue, W., Sims, A. H., Zhao, C., Wang, A., Tang, G., et al. (2008). Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genetics and Biology, 45, 17–27.

    Article  CAS  Google Scholar 

  77. Zhang, J. W., Qu, Y. B., Xiao, P., Wang, X. Y., Wang, T. H., & He, F. (2012). Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp AH28-2. Journal of Bioscience and Bioengineering, 113, 697–703.

    Article  CAS  Google Scholar 

  78. Dong, X., Qin, L., Tao, Y., Huang, J., & Dong, Z. (2012). Overexpression and characterization of a laccase gene from Pleurotus ostreatus in Trichoderma reesei. Wei Sheng Wu Xue Bao, 52, 850–856.

    CAS  Google Scholar 

  79. Abyanova, A. R., Chulkin, A. M., Vavilova, E. A., Fedorova, T. V., Loginov, D. S., Koroleva, O. V., & Benevolensky, S. V. (2010). A heterologous production of the Trametes hirsuta laccase in the fungus Penicillium canescens. Applied Biochemistry and Microbiology, 46, 313–317.

    Article  CAS  Google Scholar 

  80. Baker, C. J. O., & White, T. C. (2000). Expression of the laccase IV gene from Trametes versicolor in Trichoderma reesei. Abstracts of papers: American Chemical Society, 219, U281–U281.

  81. Fujihiro, S., Higuchi, R., Hisamatsu, S., & Sonoki, S. (2009). Metabolism of hydroxylated PCB congeners by cloned laccase isoforms. Applied Microbiology and Biotechnology, 82, 853–860.

    Article  CAS  Google Scholar 

  82. Valkonen, M., Ward, M., Wang, H., Penttila, M., & Saloheimo, M. (2003). Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Applied and Environmental Microbiology, 69, 6979–6986.

    Article  CAS  Google Scholar 

  83. Skalova, T., Dohnalek, J., Ostergaard, L. H., Ostergaard, P. R., Kolenko, P., Duskova, J., et al. (2009). The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. Journal of Molecular Biology, 385, 1165–1178.

    Article  CAS  Google Scholar 

  84. Andberg, M., Hakulinen, N., Auer, S., Saloheimo, M., Koivula, A., Rouvinen, J., & Kruus, K. (2009). Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. The FEBS Journal, 276, 6285–6300.

    Article  CAS  Google Scholar 

  85. Berka, R. M., Schneider, P., Golightly, E. J., Brown, S. H., Madden, M., Brown, K. M., et al. (1997). Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Applied and Environmental Microbiology, 63, 3151–3157.

    CAS  Google Scholar 

  86. Record, E., Punt, P. J., Chamkha, M., Labat, M., van Den Hondel, C. A., & Asther, M. (2002). Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. European Journal of Biochemistry, 269, 602–609.

    Article  CAS  Google Scholar 

  87. Wahleithner, J. A., Xu, F., Brown, K. M., Brown, S. H., Golightly, E. J., Halkier, T., et al. (1996). The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Current Genetics, 29, 395–403.

    Article  CAS  Google Scholar 

  88. Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., & Solomon, E. I. (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta, 1292, 303–311.

    Article  Google Scholar 

  89. Xu, F., Berka, R. M., Wahleithner, J. A., Nelson, B. A., Shuster, J. R., Brown, S. H., et al. (1998). Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. The Biochemical Journal, 334(Pt 1), 63–70.

    Article  CAS  Google Scholar 

  90. Bukh, C., Lund, M., & Bjerrum, M. J. (2006). Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. Journal of Inorganic Biochemistry, 100, 1547–1557.

    Article  CAS  Google Scholar 

  91. Ducros, V., Brzozowski, A. M., Wilson, K. S., Brown, S. H., Ostergaard, P., Schneider, P., et al. (1998). Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nature Structural Biology, 5, 310–316.

    Article  CAS  Google Scholar 

  92. Hakulinen, N., Kruus, K., Koivula, A., & Rouvinen, J. (2006). A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 350, 929–934.

    Article  CAS  Google Scholar 

  93. Sigoillot, C., Record, E., Belle, V., Robert, J. L., Levasseur, A., Punt, P. J., et al. (2004). Natural and recombinant fungal laccases for paper pulp bleaching. Applied Microbiology and Biotechnology, 64, 346–352.

    Article  CAS  Google Scholar 

  94. Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Perez-Boada, M., et al. (2005). Comparison of different fungal enzymes for bleaching high-quality paper pulps. Journal of Biotechnology, 115, 333–343.

    Article  CAS  Google Scholar 

  95. Ravalason, H., Herpoel-Gimbert, I., Record, E., Bertaud, F., Grisel, S., de Weert, S., et al. (2009). Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. Journal of Biotechnology, 142, 220–226.

    Article  CAS  Google Scholar 

  96. Alberts, J. F., Gelderblom, W. C., Botha, A., & van Zyl, W. H. (2009). Degradation of aflatoxin B(1) by fungal laccase enzymes. International Journal of Food Microbiology, 135, 47–52.

    Article  CAS  Google Scholar 

  97. Kulys, J., & Vidziunaite, R. (2003). Amperometric biosensors based on recombinant laccases for phenols determination. Biosensors & Bioelectronics, 18, 319–325.

    Article  CAS  Google Scholar 

  98. Kulys, J., Bratkovskaja, I., & Vidziunaite, R. (2005). Laccase-catalysed iodide oxidation in presence of methyl syringate. Biotechnology and Bioengineering, 92, 124–128.

    Article  CAS  Google Scholar 

  99. LaFayette, P. R., Eriksson, K. E., & Dean, J. F. (1999). Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Molecular Biology, 40, 23–35.

    Article  CAS  Google Scholar 

  100. Li, L., & Steffens, J. C. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215, 239–247.

    Article  CAS  Google Scholar 

  101. Cesarino, I., Araujo, P., Mayer, J. L. S., Vicentini, R., Berthet, S., Demedts, B., et al. (2013). Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S: G ratio of Arabidopsis lac17 mutant. Journal of Experimental Botany, 64, 1769–1781.

    Article  CAS  Google Scholar 

  102. Davarpanah, S. J., Ahn, J. W., Ko, S. M., Jung, S. H., Park, Y. I., Liu, J. R., & Jeong, W. J. (2012). Stable expression of a fungal laccase protein using transplastomic tobacco. Plant Biotechnology Reports, 6, 305–312.

    Article  Google Scholar 

  103. Chiaiese, P., Palomba, F., Tatino, F., Lanzillo, C., Pinto, G., Pollio, A., & Filippone, E. (2011). Engineered tobacco and microalgae secreting the fungal laccase PDXA1b reduce phenol content in olive oil mill wastewater. Enzyme and Microbial Technology, 49, 540–546.

    Article  CAS  Google Scholar 

  104. Nasrin, Z., Yoshikawa, M., Nakamura, Y., Begum, S., Nakaba, S., Uesugi, M., et al. (2010). Overexpression of a fungal laccase gene induces nondehiscent anthers and morphological changes in flowers of transgenic tobacco. Journal of Wood Science, 56, 460–469.

    Article  CAS  Google Scholar 

  105. Dittmer, N. T., Gorman, M. J., & Kanost, M. R. (2009). Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 39, 596–606.

    Article  CAS  Google Scholar 

  106. Coy, M. R., Salem, T. Z., Denton, J. S., Kovaleva, E. S., Liu, Z., Barber, D. S., et al. (2010). Phenol-oxidizing laccases from the termite gut. Insect Biochemistry and Molecular Biology, 40, 723–732.

    Article  CAS  Google Scholar 

  107. Verstrepen, K. J., Chambers, P. J., & Pretorius, I. S. (2006). The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits. In A. Querol & G. Fleet (Eds.), Yeasts in food and beverages (pp. 399–444). Berlin: Springer.

    Chapter  Google Scholar 

  108. Rodgers, C. J., Blanford, C. F., Giddens, S. R., Skamnioti, P., Armstrong, F. A., & Gurr, S. J. (2010). Designer laccases: a vogue for high-potential fungal enzymes? Trends in Biotechnology, 28, 63–72.

    Article  CAS  Google Scholar 

  109. Maestre-Reyna, M., Liu, W. C., Jeng, W. Y., Lee, C. C., Hsu, C. A., Wen, T. N., et al. (2015). Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS One, 10, e0120601.

    Article  Google Scholar 

  110. Liu, W., Chao, Y., Liu, S., Bao, H., & Qian, S. (2003). Molecular cloning and characterization of a laccase gene from the basidiomycete Fomes lignosus and expression in Pichia pastoris. Applied Microbiology and Biotechnology, 63, 174–181.

    Article  CAS  Google Scholar 

  111. Mate, D., Garcia-Ruiz, E., Camarero, S., & Alcalde, M. (2011). Directed evolution of fungal laccases. Current Genomics, 12, 113–122.

    Article  CAS  Google Scholar 

  112. Mate, D., Garcia-Burgos, C., Garcia-Ruiz, E., Ballesteros, A. O., Camarero, S., & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chemistry & Biology, 17, 1030–1041.

    Article  CAS  Google Scholar 

  113. Zumarraga, M., Bulter, T., Shleev, S., Polaina, J., Martinez-Arias, A., Plou, F. J., et al. (2007). In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chemistry & Biology, 14, 1052–1064.

    Article  CAS  Google Scholar 

  114. Jadhav, J. P., Parshetti, G. K., Kalme, S. D., & Govindwar, S. P. (2007). Decolourization of azo dye methyl MTCC red by Saccharomyces cerevisiae MTCC-463. Chemosphere, 68, 394–400.

    Article  CAS  Google Scholar 

  115. Kalyani, D., Tiwari, M. K., Li, J., Kim, S. C., Kalia, V. C., Kang, Y. C., & Lee, J. K. (2015). A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One, 10, e0120156.

    Article  CAS  Google Scholar 

  116. Sato, Y., Wuli, B., Sederoff, R., & Whetten, R. (2001). Molecular cloning and expression of eight laccase cDNAs in Loblolly Pine (Pinus taeda). Journal of Plant Research, 114, 147–155.

    Article  CAS  Google Scholar 

  117. Feng, B. Z., & Li, P. (2014). Cloning, characterization and expression of a novel laccase gene Pclac2 from Phytophthora capsici. Brazilian Journal of Microbiology, 45, 351–357.

    Article  Google Scholar 

  118. Feng, B. Z., & Li, P. Q. (2013). Cloning and expression of a novel laccase gene from Phytophthora capsici. Journal of Plant Pathology, 95, 417–421.

    Google Scholar 

  119. Liu, H., Cheng, Y., Du, B., Tong, C., Liang, S., Han, S., et al. (2015). Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS One, 10, 33.

    Google Scholar 

  120. Jonsson, L. J., Saloheimo, M., & Penttila, M. (1997). Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Current Genetics, 32, 425–430.

    Article  CAS  Google Scholar 

  121. Cassland, P., & Jonsson, L. J. (1999). Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Applied Microbiology and Biotechnology, 52, 393–400.

    Article  CAS  Google Scholar 

  122. Piscitelli, A., Giardina, P., Mazzoni, C., & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 69, 428–439.

    Article  CAS  Google Scholar 

  123. Pezzella, C., Autore, F., Giardina, P., Piscitelli, A., Sannia, G., & Faraco, V. (2009). The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Current Genetics, 55, 45–57.

    Article  CAS  Google Scholar 

  124. Bleve, G., Lezzi, C., Spagnolo, S., Tasco, G., Tufariello, M., Casadio, R., et al. (2013). Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Protein Engineering, Design & Selection, 26, 1–13.

    Article  CAS  Google Scholar 

  125. Brown, M. A., Zhao, Z. W., & Mauk, A. G. (2002). Expression and characterization of a recombinant multi-copper oxidase: laccase IV from Trametes versicolor. Inorganica Chimica Acta, 331, 232–238.

    Article  CAS  Google Scholar 

  126. Cui, T. J., Wang, X. T., Zhou, H. M., Hong, Y. Z., Xiao, Y. Z., Cui, T. J., et al. (2007). High output of a Trametes laccase in Pichia pastoris and characterization of recombinant enzymes. Sheng Wu Gong Cheng Xue Bao, 23, 1055–1059.

    Article  Google Scholar 

  127. Garg, N., Bieler, N., Kenzom, T., Chhabra, M., Ansorge-Schumacher, M., & Mishra, S. (2012). Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnology, 12, 75.

    Article  CAS  Google Scholar 

  128. Hilden, K., Makela, M. R., Lundell, T., Kuuskeri, J., Chernykh, A., Golovleva, L., et al. (2013). Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 97, 1589–1599.

    Article  CAS  Google Scholar 

  129. Hoshida, H., Nakao, M., Kanazawa, H., Kubo, K., Hakukawa, T., Morimasa, K., et al. (2001). Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. Journal of Bioscience and Bioengineering, 92, 372–380.

    Article  CAS  Google Scholar 

  130. Huang, S. J., Liu, Z. M., Huang, X. L., Guo, L. Q., & Lin, J. F. (2011). Molecular cloning and characterization of a novel laccase gene from a white-rot fungus Polyporus grammocephalus TR16 and expression in Pichia pastoris. Letters in Applied Microbiology, 52, 290–297.

    Article  CAS  Google Scholar 

  131. Huang, W. T., Tai, R., Hseu, R. S., & Huang, C. T. (2011). Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochemistry, 46, 1469–1474.

    Article  CAS  Google Scholar 

  132. Necochea, R., Valderrama, B., Diaz-Sandoval, S., Folch-Mallol, J. L., Vazquez-Duhalt, R., & Iturriaga, G. (2005). Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters, 244, 235–241.

    Article  CAS  Google Scholar 

  133. Soden, D. M., O’Callaghan, J., & Dobson, A. D. (2002). Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology, 148, 4003–4014.

    Article  CAS  Google Scholar 

  134. Sun, J., Peng, R. H., Xiong, A. S., Tian, Y. S., Zhao, W., Xu, H., et al. (2012). Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris. Molecular Biology Reports, 39, 3807–3814.

    Article  CAS  Google Scholar 

  135. Zhang, Y. B., Jiang, M. L., Hu, X. J., Zhang, G. M., & Ma, L. X. (2005). Expression of a laccase gene from Pleurotus ostreatus in Pichia pastoris and characterization of the recombinant enzyme. Wei Sheng Wu Xue Bao, 45, 625–629.

    Google Scholar 

  136. Uldschmid, A., Dombi, R., & Marbach, K. (2003). Identification and functional expression of ctaA, a P-type ATPase gene involved in copper trafficking in Trametes versicolor. Microbiology, 149, 2039–2048.

    Article  CAS  Google Scholar 

  137. Williamson, P. R. (1994). Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. Journal of Bacteriology, 176, 656–664.

    CAS  Google Scholar 

  138. Yang, Y., Fan, F. F., Zhuo, R., Ma, F. Y., Gong, Y. M., Wan, X., et al. (2012). Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Applied and Environmental Microbiology, 78, 5845–5854.

    Article  CAS  Google Scholar 

  139. Kim, D., Kwak, E., & Choi, H. T. (2006). Increase of yeast survival under oxidative stress by the expression of the laccase gene from Coprinellus congregatus. Journal of Microbiology, 44, 617–621.

    CAS  Google Scholar 

  140. Yang, Y., Ma, F. Y., Yu, H. B., Fan, F. F., Wan, X., Zhang, X. Y., & Jiang, M. L. (2011). Characterization of a laccase gene from the white-rot fungi Trametes sp 5930 isolated from Shennongjia Nature Reserve in China and studying on the capability of decolorization of different synthetic dyes. Biochemical Engineering Journal, 57, 13–22.

    Article  CAS  Google Scholar 

  141. Lin, Y. Q., Zhang, Z., Tian, Y. S., Zhao, W., Zhu, B., Xu, Z. S., et al. (2013). Purification and characterization of a novel laccase from Coprinus cinereus and decolorization of different chemically dyes. Molecular Biology Reports, 40, 1487–1494.

    Article  CAS  Google Scholar 

  142. Zhuo, R., Ma, L., Fan, F., Gong, Y., Wan, X., Jiang, M., et al. (2011). Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. Journal of Hazardous Materials, 192, 855–873.

    Article  CAS  Google Scholar 

  143. Fan, F., Zhuo, R., Sun, S., Wan, X., Jiang, M., Zhang, X., & Yang, Y. (2011). Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresource Technology, 102, 3126–3137.

    Article  CAS  Google Scholar 

  144. Zheng, M. M., Chi, Y. J., Yi, H. W., & Shao, S. L. (2014). Decolorization of Alizarin Red and other synthetic dyes by a recombinant laccase from Pichia pastoris. Biotechnology Letters, 36, 39–45.

    Article  CAS  Google Scholar 

  145. Lu, L., Zhao, M., Liang, S. C., Zhao, L. Y., Li, D. B., & Zhang, B. B. (2009). Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. Journal of Applied Microbiology, 107, 1149–1156.

    Article  CAS  Google Scholar 

  146. Li, J. F., Hong, Y. Z., & Xiao, Y. Z. (2007). Cloning and heterologous expression of the gene of laccase C from Trametes sp. 420 and potential of recombinant laccase in dye decolorization. Wei Sheng Wu Xue Bao, 47, 54–58.

    Google Scholar 

  147. Hong, Y. Z., Zhou, H. M., Tu, X. M., Li, J. F., & Xiao, Y. Z. (2007). Cloning of a laccase gene from a novel basidiomycete Trametes sp 420 and its heterologous expression in Pichia pastoris. Current Microbiology, 54, 260–265.

    Article  CAS  Google Scholar 

  148. Li, J. F., Hong, Y. Z., Xiao, Y. Z., Xu, Y. H., & Fang, W. (2007). High production of laccase B from Trametes sp in Pichia pastoris. World Journal of Microbiology & Biotechnology, 23, 741–745.

    Article  CAS  Google Scholar 

  149. Theerachat, M., Emond, S., Cambon, E., Bordes, F., Marty, A., Nicaud, J. M., et al. (2012). Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresource technology, 125, 267–274.

    Article  CAS  Google Scholar 

  150. Ranieri, D., Colao, M. C., Ruzzi, M., Romagnoli, G., & Bianchi, M. M. (2009). Optimization of recombinant fungal laccase production with strains of the yeast Kluyveromyces lactis from the pyruvate decarboxylase promoter. FEMS Yeast Research, 9, 892–902.

    Article  CAS  Google Scholar 

  151. Guo, M., Lu, F., Liu, M., Li, T., Pu, J., Wang, N., et al. (2008). Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye. Biotechnology Letters, 30, 2091–2096.

    Article  CAS  Google Scholar 

  152. Miele, A., Giardina, P., Sannia, G., & Faraco, V. (2010). Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. Journal of Applied Microbiology, 108, 998–1006.

    Article  CAS  Google Scholar 

  153. Gu, C., Zheng, F., Long, L., Wang, J., & Ding, S. (2014). Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS One, 9, e93912.

    Article  CAS  Google Scholar 

  154. Li, Q., Ge, L., Cai, J., Pei, J., Xie, J., & Zhao, L. (2014). Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes. Journal of Microbiology and Biotechnology, 24, 545–555.

    Article  CAS  Google Scholar 

  155. Kenzom, T., Srivastava, P., & Mishra, S. (2014). Structural insights into 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri laccase and characterization of degradation products. Applied and Environmental Microbiology, 80, 7484–7495.

    Article  CAS  Google Scholar 

  156. Zhuo, R., He, F., Zhang, X., & Yang, Y. (2015). Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents. Biochemical Engineering Journal, 93, 63–72.

    Article  CAS  Google Scholar 

  157. Li, Q., Xie, J. C., Zhao, L. G., Xue, Q. X., & Pei, J. J. (2013). Optimization of fermentation conditions for laccase production by recombinant Pichia pastoris GS115-LCCA using response surface methodology and its application to dye decolorization. Bioresources, 8, 4072–4087.

    Google Scholar 

  158. Tian, Y. S., Xu, H., Peng, R. H., Yao, Q. H., & Wang, R. T. (2014). Heterologous expression and characterization of laccase 2 from Coprinopsis cinerea capable of decolourizing different recalcitrant dyes. Biotechnology, Biotechnological Equipment, 28, 248–258.

    Article  CAS  Google Scholar 

  159. Kittl, R., Mueangtoom, K., Gonaus, C., Khazaneh, S. T., Sygmund, C., Haltrich, D., & Ludwig, R. (2012). A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. Journal of Biotechnology, 157, 304–314.

    Article  CAS  Google Scholar 

  160. Larsson, S., Cassland, P., & Jonsson, L. J. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology, 67, 1163–1170.

    Article  CAS  Google Scholar 

  161. Lu, C. X., Wang, H. Y., Luo, Y. M., & Guo, L. (2010). An efficient system for pre-delignification of gramineous biofuel feedstock in vitro: application of a laccase from Pycnoporus sanguineus H275. Process Biochemistry, 45, 1141–1147.

    Article  CAS  Google Scholar 

  162. Arana-Cuenca, A., Tellez-Jurado, A., Yague, S., Ferminan, E., Carbajo, J. M., Dominguez, A., et al. (2010). Delignification of Pinus radiata kraft pulp by treatment with a yeast genetically modified to produce laccases. Forest Systems, 19, 234–240.

    Article  Google Scholar 

  163. Xu, Y., Hong, Y., Xiao, Y., & Fang, W. (2007). Preparation and application of polyclonal antibody against a recombinant laccase. Cellular & Molecular Immunology, 4, 315–317.

    Article  CAS  Google Scholar 

  164. Mate, D. M., Gonzalez-Perez, D., Falk, M., Kittl, R., Pita, M., De Lacey, A. L., et al. (2013). Blood tolerant laccase by directed evolution. Chemistry & Biology, 20, 223–231.

    Article  CAS  Google Scholar 

  165. Mate, D. M., Gonzalez-Perez, D., Kittl, R., Ludwig, R., & Alcalde, M. (2013). Functional expression of a blood tolerant laccase in Pichia pastoris. BMC Biotechnology, 13, 38.

    Article  CAS  Google Scholar 

  166. Joo, S. S., Ryu, I. W., Park, J. K., Yoo, Y. M., Lee, D. H., Hwang, K. W., et al. (2008). Molecular cloning and expression of a laccase from Ganoderma lucidum, and its antioxidative properties. Molecules and Cells, 25, 112–118.

    CAS  Google Scholar 

  167. Nishibori, N., Masaki, K., Tsuchioka, H., Fujii, T., & Iefuji, H. (2013). Comparison of laccase production levels in Pichia pastoris and Cryptococcus sp S-2. Journal of Bioscience and Bioengineering, 115, 394–399.

    Article  CAS  Google Scholar 

  168. Camarero, S., Pardo, I., Canas, A. I., Molina, P., Record, E., Martinez, A. T., et al. (2012). Engineering platforms for directed evolution of laccase from Pycnoporus cinnabarinus. Applied and Environmental Microbiology, 78, 1370–1384.

    Article  CAS  Google Scholar 

  169. Hong, Y., Xiao, Y., Zhou, H., Fang, W., Zhang, M., Wang, J., et al. (2006). Expression of a laccase cDNA from Trametes sp. AH28-2 in Pichia pastoris and mutagenesis of transformants by nitrogen ion implantation. FEMS Microbiology Letters, 258, 96–101.

    Article  CAS  Google Scholar 

  170. Hong, F., Meinander, N. Q., & Jonsson, L. J. (2002). Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnology and Bioengineering, 79, 438–449.

    Article  CAS  Google Scholar 

  171. Klonowska, A., Gaudin, C., Asso, M., Fournel, A., Reglier, M., & Tron, T. (2005). LAC3, a new low redox potential laccase from Trametes sp. strain C30 obtained as a recombinant protein in yeast. Enzyme and Microbial Technology, 36, 34–41.

    Article  CAS  Google Scholar 

  172. Sudbery, P. E. (1996). The expression of recombinant proteins in yeasts. Current Opinion in Biotechnology, 7, 517–524.

    Article  CAS  Google Scholar 

  173. Cregg, J. M., Vedvick, T. S., & Raschke, W. C. (1993). Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y), 11, 905–910.

    Article  CAS  Google Scholar 

  174. Faber, K. N., Harder, W., Ab, G., & Veenhuis, M. (1995). Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast, 11, 1331–1344.

    Article  CAS  Google Scholar 

  175. Zou, L., Miles, A. P., Wang, J., & Stowers, A. W. (2003). Expression of malaria transmission-blocking vaccine antigen Pfs25 in Pichia pastoris for use in human clinical trials. Vaccine, 21, 1650–1657.

    Article  CAS  Google Scholar 

  176. Ferrara, M. A., Severino, N. M. B., Mansure, J. J., Martins, A. S., Oliveira, E. M. M., Siani, A. C., et al. (2006). Asparaginase production by a recombinant Pichia pastoris strain harbouring Saccharomyces cerevisiae ASP3 gene. Enzyme and Microbial Technology, 39, 1457–1463.

    Article  CAS  Google Scholar 

  177. Herpoel, I., Moukha, S., Lesage-Meessen, L., Sigoillot, J., & Asther, M. (2000). Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiology Letters, 183, 301–306.

    Article  CAS  Google Scholar 

  178. Galhaup, C., Wagner, H., Hinterstoisser, B., & Haltrich, D. (2002). Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology, 30, 529–536.

    Article  CAS  Google Scholar 

  179. Lomascolo, A., Record, E., Herpoel-Gimbert, I., Delattre, M., Robert, J. L., Georis, J., et al. (2003). Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. Journal of Applied Microbiology, 94, 618–624.

    Article  CAS  Google Scholar 

  180. Revankar, M. S., & Lele, S. S. (2006). Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochemistry, 41, 581–588.

    Article  CAS  Google Scholar 

  181. Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E., & Hadar, Y. (2007). Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme and Microbial Technology, 41, 57–61.

    Article  CAS  Google Scholar 

  182. Alves, A. M., Record, E., Lomascolo, A., Scholtmeijer, K., Asther, M., Wessels, J. G., & Wosten, H. A. (2004). Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Applied and Environmental Microbiology, 70, 6379–6384.

    Article  CAS  Google Scholar 

  183. Guo, M., Lu, F., Du, L., Pu, J., & Bai, D. (2006). Optimization of the expression of a laccase gene from Trametes versicolor in Pichia methanolica. Applied Microbiology and Biotechnology, 71, 848–852.

    Article  CAS  Google Scholar 

  184. Periasamy, R., & Palvannan, T. (2010). Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology. Journal of Basic Microbiology, 50, 548–556.

    Article  CAS  Google Scholar 

  185. Moin, S. F., & Omar, M. N. (2014). Laccase enzymes: purification, structure to catalysis and tailoring. Protein and Peptide Letters, 21, 707–713.

    Article  CAS  Google Scholar 

  186. Festa, G., Autore, F., Fraternali, F., Giardina, P., & Sannia, G. (2008). Development of new laccases by directed evolution: functional and computational analyses. Proteins, 72, 25–34.

    Article  CAS  Google Scholar 

  187. Pardo, I., Vicente, A. I., Mate, D. M., Alcalde, M., & Camarero, S. (2012). Development of chimeric laccases by directed evolution. Biotechnology and Bioengineering, 109, 2978–2986.

    Article  CAS  Google Scholar 

  188. Bleve, G., Lezzi, C., Mita, G., Rampino, P., Perrotta, C., Villanova, L., & Grieco, F. (2008). Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 79, 731–741.

    Article  CAS  Google Scholar 

  189. Kimata, K., Yamaguchi, M., Saito, Y., Hata, H., Miyake, K., Yamane, T., et al. (2012). High cell-density expression system: a novel method for extracellular production of difficult-to-express proteins. Journal of Bioscience and Bioengineering, 113, 154–159.

    Article  CAS  Google Scholar 

  190. Lu, J. Z., Guo, Q., Cui, M. L., Yang, L., Du, S. S., Ruan, H., & He, G. Q. (2012). Construction of a yeast cell-surface display system and expression of Trametes sp laccase. In W. Pan, J. X. Ren, & Y. G. Li (Eds.), Renewable and Sustainable Energy (pp. 3635–3640). Stafa-Zurich: Trans Tech Publications Ltd.

    Google Scholar 

  191. Robert, V., Mekmouche, Y., Pailley, P. R., & Tron, T. (2011). Engineering laccases: in search for novel catalysts. Current Genomics, 12, 123–129.

    Article  CAS  Google Scholar 

  192. Kim, J. M., Park, S. M., & Kim, D. H. (2010). Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae. BMC Biotechnology, 10, 18.

    Article  CAS  Google Scholar 

  193. Kojima, Y., Tsukuda, Y., Kawai, Y., Tsukamoto, A., Sugiura, J., Sakaino, M., & Kita, Y. (1990). Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. The Journal of Biological Chemistry, 265, 15224–15230.

    CAS  Google Scholar 

  194. Alcalde, M., Bulter, T., Zumarraga, M., Garcia-Arellano, H., Mencia, M., Plou, F. J., & Ballesteros, A. (2005). Screening mutant libraries of fungal laccases in the presence of organic solvents. Journal of Biomolecular Screening, 10, 624–631.

    Article  CAS  Google Scholar 

  195. Zumarraga, M., Camarero, S., Shleev, S., Martinez-Arias, A., Ballesteros, A., Plou, F. J., & Alcalde, M. (2008). Altering the laccase functionality by in vivo assembly of mutant libraries with different mutational spectra. Proteins, 71, 250–260.

    Article  CAS  Google Scholar 

  196. Hoshida, H., Fujita, T., Murata, K., Kubo, K., & Akada, R. (2005). Copper-dependent production of a Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 69, 1090–1097.

    Article  CAS  Google Scholar 

  197. Balland, V., Hureau, C., Cusano, A. M., Liu, Y., Tron, T., & Limoges, B. (2008). Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes. Chemistry, 14, 7186–7192.

    CAS  Google Scholar 

  198. Ji, L., Shen, Y., Xu, L., Peng, B., Xiao, Y., & Bao, X. (2011). Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2. Bioresource Technology, 102, 8105–8109.

    Article  CAS  Google Scholar 

  199. Bao, S. Y., Teng, Z., & Ding, S. J. (2013). Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Molecular Biology Reports, 40, 1927–1936.

    Article  CAS  Google Scholar 

  200. Bao, W. H., Peng, R. H., Zhang, Z., Tian, Y. S., Zhao, W., Xue, Y., et al. (2012). Expression, characterization and 2,4,6-trichlorophenol degradation of laccase from Monilinia fructigena. Molecular Biology Reports, 39, 3871–3877.

    Article  CAS  Google Scholar 

  201. Otterbein, L., Record, E., Longhi, S., Asther, M., & Moukha, S. (2000). Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. European Journal of Biochemistry, 267, 1619–1625.

    Article  CAS  Google Scholar 

  202. Zhang, Y. B., Jiang, Q., Jiang, M. L., & Ma, L. X. (2004). Cloning of a laccase gene from Flammulina velutipes and study on its expression in Pichia pastoris. Wei Sheng Wu Xue Bao, 44, 775–779.

    CAS  Google Scholar 

  203. Li, Q., Pei, J., Zhao, L., Xie, J., Cao, F., & Wang, G. (2014). Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. Prikladnaia Biokhimiia i Mikrobiologiia, 50, 163–170.

    CAS  Google Scholar 

  204. Guo, M., Lu, F., Pu, J., Bai, D., & Du, L. (2005). Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Applied Microbiology and Biotechnology, 69, 178–183.

    Article  CAS  Google Scholar 

  205. Zhang, A. L., Luo, J. X., Zhang, T. Y., Pan, Y. W., Tan, Y. H., Fu, C. Y., & Tu, F. Z. (2009). Recent advances on the GAP promoter derived expression system of Pichia pastoris. Molecular Biology Reports, 36, 1611–1619.

    Article  CAS  Google Scholar 

  206. Hu, M. R., Chao, Y. P., Zhang, G. Q., Yang, X. Q., Xue, Z. Q., & Qian, S. J. (2007). Molecular evolution of Fomes lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro. Biomolecular Engineering, 24, 619–624.

    Article  CAS  Google Scholar 

  207. Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poveda-Cuevas, S. A., Reyes-Guzman, E. A., Poutou-Pinales, R. A., Reyes-Montano, E. A., et al. (2015). Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS One, 10, e0116524.

    Article  Google Scholar 

  208. Bohlin, C., Jonsson, L. J., Roth, R., & van Zyl, W. H. (2006). Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Applied Biochemistry and Biotechnology, 129–132, 195–214.

    Article  Google Scholar 

  209. Faraco, V., Ercole, C., Festa, G., Giardina, P., Piscitelli, A., & Sannia, G. (2008). Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Applied Microbiology and Biotechnology, 77, 1329–1335.

    Article  CAS  Google Scholar 

  210. Camattari, A., Bianchi, M. M., Branduardi, P., Porro, D., & Brambilla, L. (2007). Induction by hypoxia of heterologous-protein production with the KlPDC1 promoter in yeasts. Applied and Environmental Microbiology, 73, 922–929.

    Article  CAS  Google Scholar 

  211. Kurose, T., Saito, Y., Kimata, K., Nakagawa, Y., Yano, A., Ito, K., & Kawarasaki, Y. (2014). Secretory expression of Lentinula edodes intracellular laccase by yeast high-cell-density system: sub-milligram production of difficult-to-express secretory protein. Journal of Bioscience and Bioengineering, 117, 659–663.

    Article  CAS  Google Scholar 

  212. Madzak, C., Otterbein, L., Chamkha, M., Moukha, S., Asther, M., Gaillardin, C., & Beckerich, J. M. (2005). Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Research, 5, 635–646.

    Article  CAS  Google Scholar 

  213. Jolivalt, C., Madzak, C., Brault, A., Caminade, E., Malosse, C., & Mougin, C. (2005). Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Applied Microbiology and Biotechnology, 66, 450–456.

    Article  CAS  Google Scholar 

  214. Madzak, C., Mimmi, M. C., Caminade, E., Brault, A., Baumberger, S., Briozzo, P., et al. (2006). Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Engineering, Design & Selection, 19, 77–84.

    Article  CAS  Google Scholar 

  215. Alcalde, M., Zumarraga, M., Polaina, J., Ballesteros, A., & Plou, F. J. (2006). Combinatorial saturation mutagenesis by in vivo overlap extension for the engineering of fungal laccases. Combinatorial Chemistry & High Throughput Screening, 9, 719–727.

    Article  CAS  Google Scholar 

  216. Gelo-Pujic, M., Kim, H. H., Butlin, N. G., & Palmore, G. T. (1999). Electrochemical studies of a truncated laccase produced in Pichia pastoris. Applied and Environmental Microbiology, 65, 5515–5521.

    CAS  Google Scholar 

  217. Sherif, M., Waung, D., Korbeci, B., Mavisakalyan, V., Flick, R., Brown, G., et al. (2013). Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microbial Biotechnology, 6, 588–597.

    Article  CAS  Google Scholar 

  218. Monza, E., Lucas, M. F., Camarero, S., Alejaldre, L. C., Martinez, A. T., & Guallar, V. (2015). Insights into laccase engineering from molecular simulations: toward a binding-focused strategy. Journal of Physical Chemistry Letters, 6, 1447–1453.

    Article  CAS  Google Scholar 

  219. Glykys, D. J., Szilvay, G. R., Tortosa, P., Suarez Diez, M., Jaramillo, A., & Banta, S. (2011). Pushing the limits of automatic computational protein design: design, expression, and characterization of a large synthetic protein based on a fungal laccase scaffold. Systems and Synthetic Biology, 5, 45–58.

    Article  Google Scholar 

  220. Pardo, I., & Camarero, S. (2015). Laccase engineering by rational and evolutionary design. Cellular and Molecular Life Sciences, 72, 897–910.

    Article  CAS  Google Scholar 

  221. Kunamneni, A., Camarero, S., Garcia-Burgos, C., Plou, F. J., Ballesteros, A., & Alcalde, M. (2008). Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories, 7, 32.

    Article  CAS  Google Scholar 

  222. Bleve, G., Lezzi, C., Spagnolo, S., Rampino, P., Perrotta, C., Mita, G., & Grieco, F. (2014). Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display. Applied Biochemistry and Biotechnology, 172, 2916–2931.

    Article  CAS  Google Scholar 

  223. O’Callaghan, J., O’Brien, M. M., McClean, K., & Dobson, A. D. (2002). Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. Journal of Industrial Microbiology and Biotechnology, 29, 55–59.

    Article  CAS  Google Scholar 

  224. Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., et al. (1991). Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105, 205–212.

    Article  CAS  Google Scholar 

  225. Nakanishi, A., Bae, J. G., Fukai, K., Tokumoto, N., Kuroda, K., Ogawa, J., et al. (2012). Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Applied Microbiology and Biotechnology, 94, 939–948.

    Article  CAS  Google Scholar 

  226. Colao, M., Garzillo, A. M., Buonocore, V., Schiesser, A., & Ruzzi, M. (2003). Primary structure and transcription analysis of a laccase-encoding gene from the basidiomycete Trametes trogii. Applied Microbiology and Biotechnology, 63, 153–158.

    Article  CAS  Google Scholar 

  227. Colao, M. C., Caporale, C., Silvestri, F., Ruzzi, M., & Buonocore, V. (2009). Modeling the 3-D structure of a recombinant laccase from Trametes trogii active at a pH close to neutrality. The Protein Journal, 28, 375–383.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Grant TA01011461 from the Technological Agency of the Czech Republic and institutional concept RVO:67985823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Antošová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antošová, Z., Sychrová, H. Yeast Hosts for the Production of Recombinant Laccases: A Review. Mol Biotechnol 58, 93–116 (2016). https://doi.org/10.1007/s12033-015-9910-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9910-1

Keywords

Navigation