Skip to main content
Log in

Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Site-directed mutagenesis has been used to replace Met502 in CotA laccase by the residues leucine and phenylalanine. X-ray structural comparison of M502L and M502F mutants with the wild-type CotA shows that the geometry of the T1 copper site is maintained as well as the overall fold of the proteins. The replacement of the weak so-called axial ligand of the T1 site leads to an increase in the redox potential by approximately 100 mV relative to that of the wild-type enzyme (E 0=455 mV). However the M502L mutant exhibits a twofold to fourfold decrease in the k cat values for the all substrates tested and the catalytic activity in M502F is even more severely compromised; 10% activity and 0.15–0.05% for the non-phenolic substrates and for the phenolic substrates tested when compared with the wild-type enzyme. T1 copper depletion is a key event in the inactivation and thus it is a determinant of the thermodynamic stability of wild-type and mutant proteins. Whilst the unfolding of the tertiary structure in the wild-type enzyme is a two-state process displaying a midpoint at a guanidinium hydrochloride concentration of 4.6 M and a free-energy exchange in water of 10 kcal/mol, the unfolding for both mutant enzymes is clearly not a two-state process. At 1.9 M guanidinium hydrochloride, half of the molecules are in an intermediate conformation, only slightly less stable than the native state (approximately 1.4 kcal/mol). The T1 copper centre clearly plays a key role, from the structural, catalytic and stability viewpoints, in the regulation of CotA laccase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Messerschmidt A (1997) Multi-copper oxidases. World Science, Singapore

    Google Scholar 

  2. Lindley PF (2001) In: Bertini I, Sigel A, Sigel H (eds) Multi-copper oxidases. Handbook on metalloproteins. Dekker, New York, pp 763–811

  3. Xu F (1999) In: Flickinger MC, Drewn SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 1545–1554

  4. Gianfreda L, Xu F, Bollag J-M (1999) Bioremediation J 3:1–25

    Article  CAS  Google Scholar 

  5. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) J Biol Chem 277:18849–18859

    Article  PubMed  CAS  Google Scholar 

  6. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) J Biol Chem 278:19416–19425

    Article  PubMed  CAS  Google Scholar 

  7. Enguita FJ, Marçal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) J Biol Chem 279:23472–23476

    Article  PubMed  CAS  Google Scholar 

  8. Bento I, Martins LO, Lopes GG, Arménia MA, Lindley PF (2005) Dalton Trans 21:3507–3513

    Article  PubMed  CAS  Google Scholar 

  9. Xu F (1996) Biochemistry 35:7608–7614

    Article  PubMed  CAS  Google Scholar 

  10. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  11. Karlin S, Zhu SZY, Karlin KD (1997) Proc Natl Acad Sci USA 94:14225–14230

    Article  PubMed  CAS  Google Scholar 

  12. Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) Methods in enzymology, macromolecular crystallography, vol 276. Academic, New York, pp 307–326

  13. CCP4 (1994) Acta Crystallogr Sect D 50:760–763

    Article  Google Scholar 

  14. Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Acta Crystallogr Sect D 55:247–255

    Article  CAS  Google Scholar 

  15. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D 60:2126–2132

    Article  CAS  Google Scholar 

  16. Ramakrishnan C, Ramachandran GN (1965) Biophys J 5:909–933

    PubMed  CAS  Google Scholar 

  17. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  18. Schneider TR (2002) Acta Crystallogr Sect D 58:195–208

    Article  CAS  Google Scholar 

  19. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  20. Eftink MR (1994) Biophys J 66:482–501

    PubMed  CAS  Google Scholar 

  21. Monsellier E, Bedouelle H (2005) Protein Eng Des Sel 18:445–456

    Article  PubMed  CAS  Google Scholar 

  22. Brenner AJ, Harris ED (1995) Anal Biochem 226:80–84

    Article  PubMed  CAS  Google Scholar 

  23. Ramachandran GN, Sasisekharan V (1968) Adv Protein Chem 23:283–437

    Article  PubMed  CAS  Google Scholar 

  24. Ducros V, Brzozowski AM, Wilson KS, Ostergaard P, Schneider P, Svendson A, Davies GJ (2001) Acta Crystallogr Sect D 57:333–336

    Article  CAS  Google Scholar 

  25. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Nat Struct Biol 9:601–605

    PubMed  CAS  Google Scholar 

  26. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) J Mol Biol 342:1519–1531

    Article  PubMed  CAS  Google Scholar 

  27. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

  28. Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Biochem J 334:63–70

    PubMed  CAS  Google Scholar 

  29. Xu F, Palmer AE, Yaver DS, Berka RM, Gambeta GA, Brown SH, Solomon EI (1999) J Biol Chem 274:12372–12375

    Article  PubMed  CAS  Google Scholar 

  30. Palmer AE, Randall DW, Xu F, Solomon EI (1999) J Am Chem Soc 121:7138–7149

    Article  CAS  Google Scholar 

  31. Pascher T, Karlsson BG, Nordling M, Malmström BG, Vänngård T (1993) Eur J Biochem 212:289–296

    Article  PubMed  CAS  Google Scholar 

  32. Hall JF, Kanbi LD, Strange RW, Hasnain SS (1999) Biochemistry 38:12675–12680

    Article  PubMed  CAS  Google Scholar 

  33. Diederix REM, Canters GW, Dennison C (2000) Biochemistry 39:9551–9560

    Article  PubMed  CAS  Google Scholar 

  34. Kataoka K, Kitagawa R, Inoue M, Naruse D, Sakurai T, Huang H-W (2005) Biochemistry 44:7004–7012

    Article  PubMed  CAS  Google Scholar 

  35. Moser CC, Dutton PL (1996) In: Bendall DS (ed) Protein electron transfer. Bios Scientific, Oxford, pp 1–21

  36. Warshel A (1978) Proc Natl Acad Sci USA 75:5250–5254

    Article  PubMed  CAS  Google Scholar 

  37. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Google Scholar 

  38. Kelly SM, Price NC (1997) Biochim Biophys Acta 1338:161–185

    PubMed  CAS  Google Scholar 

  39. Bonomo RP, Cennamo G, Purrello R, Santoro AM, Zappala RJ (2001) Inorg Chem 83:67–75

    CAS  Google Scholar 

  40. Agostinelli E, Cervoni L, Giartosio A, Morpurgo L (1995) Biochem J 306:697–702

    PubMed  CAS  Google Scholar 

  41. Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Biochim Biophys Acta 1547:397–407

    PubMed  CAS  Google Scholar 

  42. Fersht A (1999) Structure and mechanism in protein science. Freeman, New York

    Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), Cláudio M. Soares, António M. Baptista and Manuela M. Pereira for support and useful discussions. We would also like to thank João Carita for help with the cell growth in the Organic Fermentation Unit at the ITQB-UNL. The ITQB-UNL and the Fundação para a Ciência e a Tecnológia provided the resources necessary for this research. All X-ray data were collected at the European Synchrotron Radiation Facility, Grenoble, France, with the kind assistance of the scientists responsible for the operation of beam line ID29.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lígia O. Martins.

Appendix

Appendix

The thermodynamic stability of CotA wild type monitored by fluorescence was analysed according to a two-state process (N↔U) using the following equations:

$$ y = y_{{\text{N}}} f_{{\text{N}}} + y_{{\text{U}}} f_{{\text{U}}} , $$
(1)
$$ K_{{({\text{U}} - {\text{N}})}} = f_{{\text{U}}} /f_{{\text{N}}} , $$
(2)
$$ \Delta G^{{\text{0}}}_{{({\text{U}} - {\text{N}})}} = - RT\,\ln \,K_{{({\text{U}} - {\text{N}})}} , $$
(3)
$$ \Delta G^{{\text{0}}}_{{({\text{U}} - {\text{N}})}} = \Delta G^{{0\,{\text{ water}}}}_{{({\text{U}} - {\text{N}})}} - m_{{({\text{U}} - {\text{N}})}} [{\text{GdnHCl}}] $$
(4)

and

$$ [{\text{GdnHCl}}]_{{50\% }} = \Delta G^{{0\,{\text{ water}}}}_{{({\text{U}} - {\text{N}})}} /m_{{({\text{U}} - {\text{N}})}} , $$
(5)

where N and U are native and unfolded CotA, respectively, y is the fluorescence signal, f is the fraction of CotA molecules with a given conformation, K is the equilibrium constant, ΔG 0 is the standard free energy, m (U–N) is the linear dependence of ΔG 0 on GdnHCl concentration and [GdnHCl]50% is the GdnHCl concentration for ΔG 0=0. y N and y U were calculated directly from the pretransition and posttransition regions according to a linear dependence.

The thermodynamic stability evaluated by activity measurements and the absorbance at 600 nm are dependent on copper loss from T1. Therefore Eqs. 1, 2, 3, 4 and 5 were used but considering that the two-state process assessed by these two techniques is the establishment between the native state with copper bound at T1 and the native state with no copper at T1 (N↔N(no copper)).

The thermodynamic stability of CotA M502L and M502F mutants monitored by fluorescence could only be accurately fitted according to a three-state process, with the accumulation of an intermediate state in-between N and U (N↔I↔U). The following equations were used:

$$ y = y_{{\text{N}}} f_{{\text{N}}} + y_{{\text{I}}} f_{{\text{I}}} + y_{{\text{U}}} f_{{\text{U}}} , $$
(6)
$$ K_{{({\text{I}} - {\text{N}})}} = f_{{\text{I}}} /f_{{\text{N}}} , $$
(7)
$$ K_{{({\text{U}} - {\text{I}})}} = f_{{\text{U}}} /f_{{\text{I}}} , $$
(8)
$$ \Delta G^{{\text{0}}}_{{({\text{I}} - {\text{N}})}} = - RT\,\ln \,K_{{({\text{I}} - {\text{N}})}} , $$
(9)
$$ \Delta G^{{\text{0}}}_{{({\text{U}} - {\text{I}})}} = - RT\,\ln \,K_{{({\text{U}} - {\text{I}})}} , $$
(10)
$$ \Delta G^{{\text{0}}}_{{({\text{I}} - {\text{N}})}} = \Delta G^{{0\,{\text{ water}}}}_{{({\text{I}} - {\text{N}})}} - m_{{({\text{I}} - {\text{N}})}} [{\text{GdnHCl}}] $$
(11)

and

$$ \Delta G^{{\text{0}}}_{{({\text{U}} - {\text{I}})}} = \Delta G^{{0\,{\text{ water}}}}_{{({\text{U}} - {\text{I}})}} - m_{{({\text{U}} - {\text{I}})}} [{\text{GdnHCl}}], $$
(12)

where y N was considered to be the fluorescence signal at 0 M GdnHCl (this assumption was confirmed by the fluorescence emission maximum) and y U was calculated directly from the posttransition regions according to a linear dependence.

Combining Eqs. 6, 7, 8, 9, 10, 11 and 12, we fitted the fluorescence signal (and therefore fractional change of fluorescence signal) according to Eq. 13:

$$ y = \frac{\begin{aligned} & \left( {y_{\text{N}} + y_{\text{I}} \exp \left( {\left( { - \Delta G_{({\text{I}} - {\text{N}})} ^{0{\text{water}}} + m_{({\text{I}} - {\text{N}})} \left[ {{\text{GdnHCl}}} \right]} \right)/RT} \right)} \right. \\ & \quad \left. { + y_{\text{U}} \exp \left( {\left( { - \Delta G_{({\text{I}} - {\text{N}})} ^{0{\text{water}}} + m_{({\text{I}} - {\text{N}})} \left[ {{\text{GdnHCl}}} \right]} \right)/RT} \right)\exp \left( {\left( { - \Delta G_{({\text{U}} - {\text{I}})} ^{0{\text{water}}} + m_{({\text{U}} - {\text{I}})} \left[ {{\text{GdnHCl}}} \right]} \right)/RT} \right)} \right) \\ \end{aligned} } {\begin{aligned} & \left( {\exp \left( {\left( { - \Delta G_{({\text{I}} - {\text{N}})} ^{0{\text{water}}} + m_{({\text{I}} - {\text{N}})} \left[ {{\text{GdnHCl}}} \right]} \right)/RT} \right)} \right. \\ & \quad \left. { + 1 + \exp \left( {\left( { - \Delta G_{({\text{I}} - {\text{N}})} ^{0{\text{water}}} + m_{({\text{I}} - {\text{N}})} \left[ {{\text{GdnHCl}}} \right]} \right)/RT} \right)\exp \left( {\left( { - \Delta G_{({\text{U}} - {\text{I}})} ^{0{\text{water}}} + m_{({\text{U}} - {\text{I}})} \left[ {{\text{GdnHCl}}} \right]} \right)/RT} \right)} \right) \\ \end{aligned} }. $$
(13)

The fits were carried out by varying values of y I, ΔG 0 water(I–N) , m (I–N), ΔG 0 water(U–I) and m (U–I) with the Origin software using the non-linear curve-fit option. Combination of Eqs. 6, 7 and 8 leads to

$$ f_{{\text{I}}} = \frac{{K_{{({\text{I}} - {\text{N}})}} }} {{1 + K_{{({\text{I}} - {\text{N}})}} + K_{{({\text{I}} - {\text{N}})}} K_{{({\text{U}} - {\text{I}})}} }}$$
(14)

and

$$ f_{{\text{U}}} = \frac{{K_{{({\text{I}} - {\text{N}})}} K_{{({\text{U}} - {\text{I}})}} }} {{1 + K_{{({\text{I}} - {\text{N}})}} + K_{{({\text{I}} - {\text{N}})}} K_{{({\text{U}} - {\text{I}})}} }}.$$
(15)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durão, P., Bento, I., Fernandes, A.T. et al. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11, 514–526 (2006). https://doi.org/10.1007/s00775-006-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0102-0

Keywords

Navigation