Skip to main content
Log in

Improved recovery of active recombinant laccase from maize seed

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lignolytic enzymes such as laccase have been difficult to over-express in an active form. This paper describes the expression, characterization, and application of a fungal laccase in maize seed. The transgenic seed contains immobilized and extractable laccase. Fifty ppm dry weight of aqueously extractable laccase was obtained, and the remaining solids contained a significant amount of immobilized laccase that was active. Although a portion of the extractable laccase was produced as inactive apoenzyme, laccase activity was recovered by treatment with copper and chloride. In addition to allowing the apoenzyme to regain activity, treatment with copper also provided a partial purification step by precipitating other endogenous corn proteins while leaving >90% of the laccase in solution. The data also demonstrate the application of maize-produced laccase as a polymerization agent. The apparent concentration of laccase in ground, defatted corn germ is approximately 0.20% of dry weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Albersheim P (1976) The primary cell wall. In: Bonner J, Varner JE (eds) Plant biochemistry. Academic, New York, pp 226–274

  • Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop News 65:92–93

    Google Scholar 

  • Belanger FC, Kriz AL (1991) Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics 129:863–872

    CAS  PubMed  Google Scholar 

  • Bell DJ, Hoare M, Dunnill P, (1983) The formation of protein precipitates and their centrifugal recovery. In: Fiechter A (ed) Downstream processing, vol 26. Springer, Berlin Heidelberg New York, pp 2–68

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cassland P, Jonsson LJ, (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52:393–400

    Article  CAS  PubMed  Google Scholar 

  • Ciriolo MR, Desideri A, Paci M, Rotilio G (1990) Reconstitution of Cu,Zn-superoxide dismutase by the Cu(I).glutathione complex. J Biol Chem 265:11030–11034

    CAS  PubMed  Google Scholar 

  • Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450

    CAS  Google Scholar 

  • Dai Z, Hooker BS, Anderson DB, Thomas SR (2000) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targetng. Mol Breed 6:277–285

    Article  CAS  Google Scholar 

  • Dudley JW, Lambert RJ (1992) Ninety generations of selection for oil and protein in maize. Maydica 37:81–87

    Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum abumin, a protein highly susceptible to proteolytic degradation. Plant Biotech J 1:71–79

    Google Scholar 

  • Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232

    CAS  PubMed  Google Scholar 

  • Graziani MT, Morpurgo L, Rotilio G, Mondovi B (1976) Selective removal of type 2 copper from Rhus vernicifera laccase. FEBS Lett 70:87–90

    Article  CAS  PubMed  Google Scholar 

  • Hanna PM, McMillin DR, Pasenkiewicz-Gierula M, Antholine WE, Reinhammar B (1988) Type 2-depleted fungal laccase. Biochem J 253:561–568

    CAS  PubMed  Google Scholar 

  • Hauenstein BL, Jr., McMillin DR (1978) On the reconstitution of laccase from the Chinese lacquer tree. Biochem Biophys Res Commun 85:505–510

    CAS  PubMed  Google Scholar 

  • Herbers K, Wilke I, Sonnewald U (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. BioTechnology 13:63–66

    CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  Google Scholar 

  • Hoerlein G (1994) Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev Environ Contam Toxicol 138:73–145

    CAS  PubMed  Google Scholar 

  • Hood EE, Howard JA (1999) Protein products from transgenic plants. Agro-Food-Industry Hi-Tech 10:382–386

  • Hood EE, Jilka JM (1999) Plant-based production of xenogenic proteins. Curr Opin Biotechnol 10:382–386

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    CAS  PubMed  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey MR, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li CP, Howard JA (1997) Commercial production of avidin from transgenic maize: Characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    CAS  Google Scholar 

  • Hood EE, Bailey MR, Beifuss K, Horn ME, Magallanes-Lundback M, Drees C, Delaney D, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140

    Google Scholar 

  • Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394

    Article  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Google Scholar 

  • Jonsson LJ, Saloheimo M, Penttila M (1997) Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet 32:425–430

    Article  CAS  PubMed  Google Scholar 

  • Kertesz D, Rotilio G, Brunori M, Zito R, Antonini E (1972) Kinetics of reconstitution of polyphenoloxidase from apoenzyme and copper. Biochem Biophys Res Commun 49:1208–1215

    CAS  PubMed  Google Scholar 

  • Kusnadi AR, Hood E, Witcher D, Howard J, Nikolov Z (1998) Production and purification of two recombinant proteins from transgeic corn. Biotechnol Prog 14:149–155

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Szklarz G, Wojtas-Wasilewska M (1985) The effect of fungal laccase on fractionated lignosulphonates (peritan Na). Phytochemistry 24:393–396

    Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M., Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Selinger LB, Cheng KJ, Beauchemin KA, Moloney MM (1997) Plant seed oil-bodies as an immbolization matrix for a recombinant xylanase from the rumen fungus Neocallimatix patriciarum. Mol Breed 3:463–470

    Article  CAS  Google Scholar 

  • Malkin R, Malmstrom BG, Vanngard T (1969) The reversible removal of one specific copper(II) from fungal laccase. Eur J Biochem 7:253–259

    CAS  PubMed  Google Scholar 

  • May, SW (1999) Applications of oxidoreductases. Curr Opin Biotechnol 10:370–375

    Article  CAS  PubMed  Google Scholar 

  • Ong E, Pollock WB, Smith M (1997) Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomycete Trametes versicolor. Gene 196:113–119

    CAS  PubMed  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    CAS  PubMed  Google Scholar 

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123

    Article  CAS  Google Scholar 

  • Pen J, Molendijk L, Quax WJ, Sijmons PC, van Ooyen AJ, van den Elzen PJ, Rietveld K, Hoekema A (1992) Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Biotechnology 10:292–296

    CAS  PubMed  Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydrate Res 275:167–178

    Article  CAS  Google Scholar 

  • Rheinhammar B (1984) Laccase. In: Lonti R (ed) Copper proteins and copper enzymes. CRC, Boca Raton, Florida pp 2–35

  • Rogers JC (1985) Two barley α-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260:3731–3738

    CAS  PubMed  Google Scholar 

  • Saloheimo M, Niku-Paavola ML (1991) Heterologous production of a ligninolytic enzyme: expression of the Phelbia radiata laccase gene in Tricholerma reesei. BioTechnology 9:987–990

    CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize-derived bovine trypsin: Characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem (in press)

  • Yaropolov AI, Skorobogat'ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    CAS  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    CAS  PubMed  Google Scholar 

  • Ziegelhoffer T, Will J, Austin-Phillips S (1999) Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Mol Breed 5:309–318

    Article  CAS  Google Scholar 

  • Ziegler MT, Thomas SR, Danna KJ (2000) Accumulation of a thermostable endo-1,4-b-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breed 6:37–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Hood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, M.R., Woodard, S.L., Callaway, E. et al. Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63, 390–397 (2004). https://doi.org/10.1007/s00253-003-1362-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1362-z

Keywords

Navigation