Skip to main content
Log in

The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

This work was aimed at identifying and at characterizing new Pleurotus ostreatus laccases, in order to individuate the most suitable biocatalysts for specific applications. The existence of a laccase gene clustering was demonstrated in this basidiomycete fungus, and three new laccase genes were cloned, taking advantage of their closely related spatial organization on the fungus genome. cDNAs coding for two of the new laccases were isolated and expressed in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis, in order to optimize their production and to characterize the recombinant proteins. Analysis of the P. ostreatus laccase gene family allowed the identification of a “laccase subfamily” consisting of three genes. A peculiar intron–exon structure was revealed for the gene of one of the new laccases, along with a high instability of the recombinant enzyme due to lability of its copper ligand. This study allowed enlarging the assortment of P. ostreatus laccases and increasing knowledge to improve laccase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arst HN Jr, MacDonald DW (1975) A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:26–31

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Article  PubMed  CAS  Google Scholar 

  • Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    PubMed  CAS  Google Scholar 

  • Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554

    Article  CAS  Google Scholar 

  • D’Souza TM, Boominathan K, Adinarayana CR (1996) Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62:3739–3744

    PubMed  CAS  Google Scholar 

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Article  CAS  Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Ostergaard P, Schneider P, Svendson A, Davies GJ (2001) Structure of the laccase from Coprinus cinereus at 1.68-A resolution: evidence for different ‘type 2 Cu-depleted’ isoforms. Acta Crystallogr D Biol Crystallogr 57:333–336

    Article  PubMed  CAS  Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425

    Article  PubMed  CAS  Google Scholar 

  • Faraco V, Giardina P, Sannia G (2003) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008a) Heterologous expression of heterodimeric laccases from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335

    Article  PubMed  CAS  Google Scholar 

  • Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2008b) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation (in press) doi: 10.1007/s10532-008-9214-2

  • Faraco V, Pezzella C, Giardina P, Piscitelli A, Vanhulle S, Sannia G (2008c) Decolourization of textile dyes by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus. J Chem Technol Biotechnol (in press)

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    PubMed  CAS  Google Scholar 

  • Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61:2408–2413

    PubMed  CAS  Google Scholar 

  • Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P, Sannia G (1996) The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 235:508–515

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A, Sannia G (2007) Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 75:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 2:1425

    Article  Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structures in eukaryotic microbes. IRL Press, Oxford, pp 93–139

    Google Scholar 

  • Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    PubMed  CAS  Google Scholar 

  • Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J (2008) A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol 162:29–39

    Article  PubMed  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi, production and role in lignin degradation. FEMS Microbiol Lett 13:125–135

    Article  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  PubMed  CAS  Google Scholar 

  • Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001) Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92:372–380

    Article  PubMed  CAS  Google Scholar 

  • Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent enzyme. J Bacteriol 183:5426–5430

    Article  PubMed  CAS  Google Scholar 

  • Jarai G, Truong HN, Daniel-Vedele F, Marzluf GA (1992) NIT2, the nitrogen regulatory protein of Neurospora crassa, binds upstream of nia, the tomato nitrate reductase gene, in vitro. Curr Genet 21:37–41

    Article  PubMed  CAS  Google Scholar 

  • Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase (LMCO) genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61:153–163

    Article  PubMed  CAS  Google Scholar 

  • Kilaru S, Hoegger PJ, Kües U (2006) The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 50:45–60

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coriolus zonatus. Biochim Biophys Acta 1547:397–407

    PubMed  CAS  Google Scholar 

  • Kumar SVS, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394

    Article  PubMed  CAS  Google Scholar 

  • Larraya LM, Perez G, Ritter E, Pisabarro AG, Ramírez L (2000) Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol l66:5290–5300

    Article  Google Scholar 

  • Larrondo LF, Salas L, Melo F, Vicuna R, Cullen D (2003a) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Applied Environ Microbiol 69:6257–6263

    Article  CAS  Google Scholar 

  • Larrondo LF, Avila M, Salas L, Cullen D, Vicuna R (2003b) Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper activated apoprotein and complex isoform patterns. Microbiology 149:1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Larrondo LF, Gonzalez B, Cullen D, Vicuna R (2004) Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiology 150:2775–2783

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W (2007) Crystal structures of E. coli laccase CueO at different copper concentrations. Biochem Biophys Res Comm 354:21–26

    Article  PubMed  CAS  Google Scholar 

  • Mager WH, De Kruijff AJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59:506–531

    PubMed  CAS  Google Scholar 

  • Mansur M, Suarez T, Fernandez-Larrea JB, Brizuela MA, Gonzalez AE (1997) Identification of a laccase gene family in the new lignin-degrading basiodiomycete CECT 20197. Appl Environ Microbiol 63:2637–2646

    PubMed  CAS  Google Scholar 

  • Mansur M, Suarez T, Gonzalez AE (1998) Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol 64:771–774

    PubMed  CAS  Google Scholar 

  • Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modelling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM (1987) Polyphenol oxidases in plants—recent progress. Phytochemistry 26:11–20

    Article  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni C, Saliola M, Falcone C (1992) Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. Mol Microbiol 6:2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Konarska MM, Grabowski PJ, Hardy SF, Sharp PA (1984) Lariat RNA’s as intermediates and products in the splicing of messenger RNA precursors. Science 225:898–903

    Article  PubMed  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  PubMed  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  PubMed  CAS  Google Scholar 

  • Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33:220–230

    Article  CAS  Google Scholar 

  • Palmieri G, Cennamo G, Sannia G (2005a) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol 36:17–24

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Sannia G (2005b) Laccase-mediated Remazol Brilliant Blue R decolourization in a fixed-bed bioreactor. Biotechnol Prog 21:1436–1441

    Article  PubMed  CAS  Google Scholar 

  • Perry CR, Matcham SE, Wood DA, Thurston CF (1993) The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol 39:171–178

    Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  • Piscitelli A, Giardina P, Mazzoni C, Sannia G (2005) Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:428–439

    Article  PubMed  CAS  Google Scholar 

  • Raeder V, Broda P (1988) Preparation and characterization of DNA from lignin degrading fungi. Methods Enzymol 161:211–220

    Article  CAS  Google Scholar 

  • Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771

    Article  PubMed  CAS  Google Scholar 

  • Rodrıguez E, Ruiz-Duenas FJ, Kooistra R, Ramb A, Martınez AT, Martınez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19

    Article  PubMed  CAS  Google Scholar 

  • Rogalski J, Leonowicz A (1992) Phlebia radiata lactase forms induced by veratric acid and xylidine in relation to lignin peroxidase and manganese-dependent peroxidase. Acta Biotechnol 12:213–221

    Article  CAS  Google Scholar 

  • Rogalski J, Hatakka A, Longa B, Wojtas-Wasilewska M (1993) Hemicellulolytic enzymes of the ligninolytic white-rot fungus Phlebia radiata: influence of phenolic compounds on the synthesis of hemicellulolytic enzymes. Acta Biotechnol 13:53–57

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanchez-Amat A, Lucas-Elio P, Fernandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116

    PubMed  CAS  Google Scholar 

  • Smith M, Shnyreva A, Wood DA, Thurston CF (1998) Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144:1063–1069

    PubMed  CAS  Google Scholar 

  • Soden DM, Dobson ADW (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147:1755–1763

    PubMed  CAS  Google Scholar 

  • Soden DM, Dobson ADW (2003) The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol 95:553–562

    Article  PubMed  CAS  Google Scholar 

  • Thurston F (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53:230–234

    Article  PubMed  CAS  Google Scholar 

  • Yaver DS, Golightly EJ (1996) Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 28:95–102

    Article  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalbïge H (1996) Purification, characterization, molecular cloning, and expression of two lactase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    PubMed  CAS  Google Scholar 

  • Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A (1996) The identification and characterisation of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Apiyo D, Wittung-Stafshede P (2004) Role of cofactors in metalloprotein folding. Q Rev Biophys 37:285–314

    Article  PubMed  CAS  Google Scholar 

  • Wood DA (1980) Productions, purifications and properties of extracellular laccase of Agaricus bisporus. J Gen Microbiol 117:327–338

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission, Sixth Framework Program (SOPHIED contract NMP2-CT2004-505899), by grants from the Ministero dell’Università e della Ricerca Scientifica (Progetti di Rilevante Interesse Nazionale, PRIN), and from the Ministero Degli Affari Esteri di Intesa con il Ministero dell’Università e della Ricerca (Progetti di ricerca di base e tecnologica approvati nei protocolli di cooperazione scientifica e tecnologica bilaterale come previsto dal protocollo bilaterale tra Italia e Turchia). Stage of Vincenza Faraco at Department of Agrarian Production, Public University of Navarre was funded by University of Naples Federico II (Programma di scambi internazionali tra l’Università degli Studi di Napoli Federico II ed Istituti di ricerca stranieri per la mobilità di breve durata di docenti, studiosi e ricercatori). The authors thank Prof Ramírez of Department of Agrarian Production, Public University of Navarre for kindly making available the BAC (bacterial artificial chromosome) library of the Pleurotus ostreatus genome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Faraco.

Additional information

Communicated by Ursula Kües.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezzella, C., Autore, F., Giardina, P. et al. The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55, 45–57 (2009). https://doi.org/10.1007/s00294-008-0221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0221-y

Keywords

Navigation