Skip to main content

Advertisement

Log in

Heterologous expression of lcc1 from Lentinula edodes in tobacco BY-2 cells results in the production an active, secreted form of fungal laccase

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Laccase (Lcc) is a lignin-degrading enzyme produced by white-rot fungi and has been the subject of much interest in the field of bioremediation due to its ability to oxidize phenolic compounds. In this report, we describe the isolation and characterization of lcc1, a novel gene of Lentinula edodes that encodes Lcc1, and demonstrate that recombinant Lcc1 is expressed in an active, secreted form in tobacco BY-2 cells in culture. The open reading frame of lcc1 was 1,557 base pairs in length and encoded a putative protein of 518 amino acids. We introduced a chimeric form of lcc1 (CaMV35Sp:clcc1) into tobacco BY-2 cells and obtained several stable clcc1 transformants that expressed active Lcc1. Lcc1 activity in BY-2 culture media was higher than in cellular extracts, which indicated that recombinant Lcc1 was produced in a secreted form. Recombinant Lcc1 had a smaller apparent molecular weight and exhibited a different pattern of posttranslational modification than Lcc1 purified from L. edodes. The substrate specificity of purified recombinant Lcc1 was similar to L. edodes Lcc1, and both enzymes were able to decolorize the same set of dyes. These results suggest that heterologous expression of fungal Lcc1 in BY-2 cells will be a valuable tool for the production of sufficient quantities of active laccase for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves AM, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JG, Wösten HA (2004) Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol 70:6379–6384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MR, Wooddard SL, Callaway E, Beifuss K, Magallanes-Lundback M, Lane JR, Horn ME, Mallubhotla H, Delaney DD, Ward M, Van Gastel F, Howard JA, Hood EE (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    CAS  PubMed  Google Scholar 

  • Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Aenold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian V, Shribastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 43:301–312

    CAS  PubMed  Google Scholar 

  • Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto SR, Toca-Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  Google Scholar 

  • Geng X, Li K, Xu F (2004) Investigation of hydroxamic acids as laccase-mediators for pulp bleaching. Appl Microbiol Biotechnol 64:493–496

    Article  CAS  PubMed  Google Scholar 

  • Gurr SJ, Unkles SEU, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL, London, pp 93–139

    Google Scholar 

  • Hirano T, Sato T, Okawa K, Kanda K, Yaegashi K, Enei H (1999) Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Lentinula edodes. Biosci Biotechnol Biochem 63:1223–1227

    Article  CAS  PubMed  Google Scholar 

  • Isegawa Y, Sheng J, Sokawa Y, Yamanishi K, Nakagomi O, Shigeharu U (1992) Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1. Mol Cell Probes 6:467–475

    Article  CAS  PubMed  Google Scholar 

  • Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456

    Article  CAS  PubMed  Google Scholar 

  • Jonsson L, Sjostrom K, Haggstrom I, Nyman PO (1995) Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta 1251:210–215

    Article  CAS  PubMed  Google Scholar 

  • Krcˇmrˇ P, Ulrich R (1998) Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol 43:79–84

    Article  Google Scholar 

  • Kumar SVS, Phale PS, Durani S, Wangikar P (2003) Combined sequence and structure analysis of the fungal laccase family. Bioetchnol Bioengin 83:386–394

    Article  CAS  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  PubMed  Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci U S A 101:6852–6857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Viral-mediated transformation gets a boost. Nat Biotechnol 23:718–723

    Article  CAS  PubMed  Google Scholar 

  • Ministry of the Environments (2005) http://www.env.go.jp/air/tech/bio/ (in Japanese)

  • Ministry of the Environments (2007) Regulations related to the enforcement of the law concerning the conservation and sustainable use of biological diversity through regulations on the use of living modified organisms (Tentative Translation) http://www.env.go.jp/en/laws/nature/reg_ccsubdrlmo.pdf

  • Ministry of the Environments, Environmental Management Bureau (2006) The results of the survey on enforcement status of the soil contamination countermeasures act and numbers and trends of soil contamination investigations and countermeasures in the fiscal year 2004. http://www.env.go.jp/en/water/soil/result/2004_full.pdf

  • Morisaki K, Fushimi T, Kaneko S, Kusakabe I, Kobayashi H (2001) Screening for phenoloxidases from edible mushrooms. Biosci Biotechnol Biochem 65:2334–2336

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Sato T, Watanabe H, Saito K, Kawata M, Enei H (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl Microbiol Biotechnol 60:327–335

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Sato T, Enei H (2004) Bioremediation by laccases Lentinula edodes. Mushroom Sci 16:573–578

    CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack M, Paetz A, Kunert R, Bomble M, Hesse F, Stiegler G, Fischer R, Katinger H, Stoeger E, Rademacher T (2007) Functional analysis of the broadly neutralizing human anti-HIV-1 antibody 2F5 produced in transgenic BY-2 suspension cultures. FASEB J 21:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Irie T, Sato T (2005a) Isolation and characterization of a fruiting body specific exo-b-1, 3-glucanase-encoding gene, exg1, from Lentinula edodes. Curr Genet 47:244–252

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Minato K, Nagai M, Mizuno M, Sato T (2005b) Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-b-1, 3-glucanase. Curr Genet 48:195–203

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Whetten RW (2006) Characterization of two laccases of loblolly pine (Pinus taeda) expressed in tobacco BY-2 cells. J Plant Res 119:581–588

    Article  CAS  PubMed  Google Scholar 

  • Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel CAMJJ, Fournel A, Sigoillot JC, Asther M (2004) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64:346–352

    Article  CAS  PubMed  Google Scholar 

  • Soden DM, Dobson ADW (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiol 147:1755–1763

    Article  CAS  Google Scholar 

  • Soden DM, O, Callaghan J, Dobson DW (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiol 148:4003–4014

    Article  CAS  Google Scholar 

  • Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y, Iimura Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–142

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Micobiol 62:4323–4328

    Article  CAS  Google Scholar 

  • Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53:230–234

    Article  CAS  PubMed  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecle M, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci 96:11128–11133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GD, Li QJ, Luo B, Chen XY (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotech 22:893–897

    Article  Google Scholar 

  • Zhao J, Kwan HS (1999) Characterization, molecular cloning, and differential expression analysis of laccase genes from Lentinula edodes. Appl Environ Microbiol 65:4908–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Sakamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

Nucleotide sequence and deduced amino acid sequence of L. edodes lccl gene. Red letters: signal peptide, blue letters: cupper binding site, green letters: N-glycosylation site (JPEG 1.41 MB)

Supplementary Figure 2.

Southern blot analysis of L. edodes lccl gene. Full length of lccl cDNA was used for the probe. In the probe, there are no recognition sequences of all restriction enzymes used for southern bolt analysis. (JPEG 308 KB)

Supplementary Figure 3.

Northern blot analysis of L. edodes lccl gene. Northern blot analysis was carried out by the method of Hirano et al. (1999). 1; vegetative mycelia, 2; primordia, 3; stipe of mature fruit body, 4; gill of mature fruit body, 5; pileus of mature fruit body. gpd: glyceraldehyde-3-phosphate dehydrogenase gene. ras: ras gene (JPEG 503 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, Y., Nakade, K., Yano, A. et al. Heterologous expression of lcc1 from Lentinula edodes in tobacco BY-2 cells results in the production an active, secreted form of fungal laccase. Appl Microbiol Biotechnol 79, 971–980 (2008). https://doi.org/10.1007/s00253-008-1507-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1507-1

Keywords

Navigation