Skip to main content
Log in

Expression and Characterization of a Recombinant Laccase with Alkalistable and Thermostable Properties from Streptomyces griseorubens JSD-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces griseorubens JSD-1 is a novel actinomycete that could grow efficiently upon lignin, and the ligninolytic genes active in this biotransformation were expected to be crucial. To investigate the molecular mechanism of utilizing lignin, genome sequencing was carried out to obtain its draft genome, which was deposited at GenBank under the accession No. JJMG00000000. Multiple copper oxidase (MCO) was obtained, which proved to be an extracellular enzyme and have relative high expression with the stimulation of ligninolytic materials. Judging from its putative 3D structure, the N-terminal of MCO was bared, which was fit for the linkage of poly-HIS10 tag. As a result, heterogeneous expression conditions of recombinant laccase was achieved with TransB(DE3) grown in a modified terrific broth (TB) medium with an extra addition of 0.5 % glucose at 30 °C until optical density at 600 nm (OD600) reached 0.8 when expression was induced by 25 μM isopropyl β-D-1-thiogalactopyranoside (IPTG) and also 100 μM copper sulphate as supplement. Finally, it exhibited special characters of thermal robustness, alkaline activity profiles, high resistance to metallic ions and chemical inhibitors as well as dye decolourization. In summary, our findings illustrated the genetic basic of utilizing lignin in this isolate. Additionally, a novel laccase expected to be potential in agricultural and industrial application was expressed and characterized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breen, A., & Singleton, F. L. (1999). Fungi in lignocellulose breakdown and biopulping. Current Opinion in Biotechnology, 10, 252–258.

    Article  CAS  Google Scholar 

  2. Thurston, C. F. (1994). The structure and function of laccases. Microbiology, 140, 19–26.

    Article  CAS  Google Scholar 

  3. Xu, F. (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–7614.

    Article  CAS  Google Scholar 

  4. Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., & Solomon, E. I. (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta, 1292, 303–311.

    Article  Google Scholar 

  5. Hakulinen, N., Kiiskinen, L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., & Rouvinen, J. (2002). Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Natural Structural Biology, 9, 601–605.

    CAS  Google Scholar 

  6. Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  Google Scholar 

  7. O’ Malley, D. M., Whetten, R., Bao, W., Chen, C. L., & Seedorf, R. R. (1993). The role of laccase in lignification. The Plant Journal, 4, 751–757.

    Article  Google Scholar 

  8. Claus, H. (2003). Laccases and their occurrence in prokaryotes. Archives of Microbiology, 179, 145–150.

    CAS  Google Scholar 

  9. Kramer, K. J., Kanost, M. R., Hopkins, T. L., Jing, H., Zhu, Y. C., Xhu, R., Kerwin, J. L., & Turecek, F. (2001). Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 57, 385–392.

    Article  CAS  Google Scholar 

  10. Dittmer, N. T., Suderman, R. J., Jiang, H., Zhu, Y. C., Gorman, M. J., Kramer, K. J., & Kanost, M. R. (2004). Characterization of cDNAs encoding putativelaccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito Anopheles gambiae. Insect Biochemistry and Molecular Biology, 34, 29–41.

    Article  CAS  Google Scholar 

  11. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385.

    Article  CAS  Google Scholar 

  12. Gianfreda, L., Xu, F., & Bollag, J. M. (1999). Laccases: a useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–4.

    Article  CAS  Google Scholar 

  13. Mayer, A. M., & Staples, R. C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60, 551–565.

    Article  CAS  Google Scholar 

  14. Burton, S. G. (2003). Laccases and phenol oxidases in organic synthesis-a review. Current Organic Chemistry, 7, 1317–1331.

    Article  CAS  Google Scholar 

  15. Claus, H. (2004). Laccases: structure, reactions, distribution. Micron, 35, 93–96.

    Article  CAS  Google Scholar 

  16. Couto, S. R., & Herrera, J. L. T. (2006). Industrial and biotechnological applications of laccases: a review. Biotechnology Advances, 24, 500–513.

    Article  Google Scholar 

  17. Minussi, R. C., Pastore, G. M., & Duran, N. (2007). Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresource Technology, 98, 158–164.

    Article  CAS  Google Scholar 

  18. Hofrichter, M., Wesenberg, D., & Rogalski, J. (2001). Fungal laccase: properties and activity on lignin. Journal of Basic Microbiology, 41, 185–227.

    Article  Google Scholar 

  19. Hullo, M. F., Moszer, I., Danchin, A., & Martin-Verstraete, I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology, 183, 5426–5430.

    Article  CAS  Google Scholar 

  20. Grass, G., & Rensing, C. (2001). CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 286, 902–908.

    Article  CAS  Google Scholar 

  21. Outten, F. W., Huffman, D. L., Hale, J. A., & O’Halloran, T. V. (2001). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. Journal of Biological Chemistry, 276, 30670–30677.

    Article  CAS  Google Scholar 

  22. Schelder, S., Zaade, D., Litsanov, B., Bott, M., & Brocker, M. (2011). The two component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS One, 6, e22143.

    Article  CAS  Google Scholar 

  23. Miyazaki, K. (2005). A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9, 415–425.

    Article  CAS  Google Scholar 

  24. Ruijssenaars, H. J., & Hartmans, S. (2004). A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology, 65, 177–182.

    Article  CAS  Google Scholar 

  25. Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T., & Ueda, K. (2003). Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry, 133, 671–677.

    Article  CAS  Google Scholar 

  26. Leonowicz, A., Cho, N. S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Machczynski, M. C., Vijgenboom, E., Samyn, B., & Canters, G. W. (2004). Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science, 13, 2388–2397.

    Article  Google Scholar 

  27. Skalova, T., Dohnalek, J., Ostergaard, L. H., Osteryaard, P. R., Kolenko, P., Duskova, J., Stepankova, A., & Hasek, J. (2009). The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. Journal of Molecular Biology, 385, 1165–1178.

    Article  CAS  Google Scholar 

  28. Gupta, A., Nederlof, I., Sottini, S., Tepper, A. W., Groenen, E. J., Thomassen, E. A., & Canters, G. W. (2012). Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. Journal of American Chemistry Society, 134, 18213–18216.

    Article  CAS  Google Scholar 

  29. Dube, E., Shareck, F., Hurtubise, Y., Daneault, C., & Beauregard, M. (2008). Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Applied Microbiology and Biotechnology, 79, 597–603.

    Article  CAS  Google Scholar 

  30. Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., & Inamori, Y. A. (2003). A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Bioscience, Biotechnology, and Biochemistry, 67, 2167–2175.

    Article  CAS  Google Scholar 

  31. Feng, H., Zhi, Y., Sun, Y., Wei, X., Luo, Y., & Zhou, P. (2014). Draft genome sequence of a novel Streptomyces griseorubens JSD-1 active in carbon and nitrogen recycling. Genome Announcements, 2, e00650–14.

  32. Feng, H. W., Zhi, Y. E., Shi, W. W., Mao, L., & Zhou, P. (2013). Isolation, identification and characterization of a straw degrading Streptomyces griseorubens JSD-1. African Journal of Microbiology Research, 7, 2730–2735.

    Google Scholar 

  33. Altschul, S. F., Thomas, L. M., Alejandro, A. S., Jinghui, Z., Zheng, Z., Webb, M., & David, J. L. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  34. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  35. Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23, 673–679.

    Article  CAS  Google Scholar 

  36. Feng, H., Sun, Y., Zhi, Y., Wei, X., Luo, Y., Mao, L., & Zhou, P. (2014). Identification and characterization of the nitrate assimilation genes in the isolate of Streptomyces griseorubens JSD-1. Microbial Cell Factories, 13, 174.

    Article  Google Scholar 

  37. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). Signal 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  38. Kelley, L. A., & Sternberg, M. J. E. (2009). Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols, 4, 363–371.

    Article  CAS  Google Scholar 

  39. Bienfait, B., & Ertl, P. (2013). JSME: a free molecule editor in JavaScript. Journal of Cheminformatics, 5, 363–371.

    Article  Google Scholar 

  40. Gunne, M., & Urlacher, V. B. (2012). Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLoS One, 7, e52360.

    Article  CAS  Google Scholar 

  41. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., & Hopwood, D. A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147.

    Article  Google Scholar 

  42. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M., & Omura, S. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology, 21, 526–531.

    Article  Google Scholar 

  43. Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hat-tori, M., & Horinouchi, S. (2008). Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. Journal of Bacteriology, 190, 4050–4060.

    Article  CAS  Google Scholar 

  44. Han, X., Li, M., Ding, Z., Zhao, J., Ji, K., Wen, M., & Lu, T. (2012). Genome sequence of Streptomyces auratus strain AGR0001, a phoslactomycin-producing actinomycete. Journal of Bacteriology, 194, 5472–5473.

    Article  CAS  Google Scholar 

  45. Myronovskyi, M., Tokovenko, B., Manderscheid, N., Petzke, L., & Luzhetskyy, A. (2013). Complete genome sequence of Streptomyces fulvissimus. Journal of Biotechnology, 168, 117–118.

    Article  CAS  Google Scholar 

  46. Li, X. J., Zheng, R. C., Wu, Z. M., Ding, X., & Zheng, Y. G. (2014). Thermophilic esterase from Thermomyces lanuginosus: molecular cloning, functional expression and biochemical characterization. Protein Expression and Purification, 101, 1–7.

    Article  Google Scholar 

  47. Han, J., Choi, Y., Kim, W., Jeon, Y. H., Lee, S. K., Lee, B., & Ryu, K. (2010). Condon optimization enhances protein expression of human peptide deformylase in E. coli. Protein Expression and Purification, 70, 224–230.

    Article  CAS  Google Scholar 

  48. Rietsch, A., Belin, D., Martin, N., & Beckwith, J. (1996). An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 93, 13048–13053.

    Article  CAS  Google Scholar 

  49. Raina, S., & Missiakas, D. (1997). Making and breaking disulfide bonds. Annual Review of Microbiology, 51, 179–202.

    Article  CAS  Google Scholar 

  50. Sone, M., Akiyama, Y., & Ito, K. (1997). Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds. Journal of Biological Chemistry, 272, 10349–10352.

    Article  CAS  Google Scholar 

  51. Garcia-Fruitos, E., Vazquez, E., Diez-Gil, C., Corchero, J. L., Seras-Franzoso, J., Ratera, I., Veciana, J., Villaverde, A., & Veciana, J. (2012). Bacterial inclusion bodies: making gold from waste. Trends in Biotechnology, 30, 65–70.

    Article  CAS  Google Scholar 

  52. Grossman, T. H., Kawasaki, E. S., Punreddy, S. R., & Osburne, M. S. (1998). Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene, 209, 95–103.

    Article  CAS  Google Scholar 

  53. Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J., & Tan, S. (2005). Comparison of affinity tags for protein purification. Protein Expression and Purification, 41, 98–105.

    Article  CAS  Google Scholar 

  54. Yumen, I., Iwasaki, I., Suzuki, T., Todokoro, Y., Tanaka, K., Okada, O., Fujiwara, T., Yoshida, M., & Akutsu, H. (2012). Purification, characterization and reconstitution into membranes of the oligomeric c-subunit ring of thermophilic FoF1-ATP synthase expressed in Escherichia coli. Protein Expression and Purification, 82, 396–401.

    Article  CAS  Google Scholar 

  55. Molina-Guijarro, J. M., Pérez, J., Muñoz-Dorado, J., Guillén, F., Moya, R., Hernández, M., & Arias, M. E. (2009). Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. International of Microbiology, 12, 13–21.

    CAS  Google Scholar 

Download references

Acknowledgments

The research work was supported by the National High Technology Research and Development Program of China (2012AA101405), Special Fund for Agro-scientific Research in the Public Interest of China (200903056), the National Natural Science Foundation of China (20977062) and the Municipal Natural Science Foundation of Shanghai, China (13ZR1421700). We also give thanks for the sequencing service provided by Personal Biotechnology Co., Ltd. Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cellular localization of MCO. (PNG 27 kb)

Fig. S2

Images of putative 3D structure modelings. (a) MCO; (b) recombinant MCO with HIS10·tag on the N-terminal. (PNG 400 kb)

Fig. S3

Comparison of codon usage through optimization. (a) MCO; (b) CO-MCO. (JPEG 346 kb)

Fig. S4

Multiple sequences alignment of MCO and CO-MCO. (JPEG 2305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Zhang, D., Sun, Y. et al. Expression and Characterization of a Recombinant Laccase with Alkalistable and Thermostable Properties from Streptomyces griseorubens JSD-1. Appl Biochem Biotechnol 176, 547–562 (2015). https://doi.org/10.1007/s12010-015-1594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1594-2

Keywords

Navigation