Skip to main content

Solanum sect. Lycopersicon

  • Chapter
  • First Online:
Wild Crop Relatives: Genomic and Breeding Resources

Abstract

In this review, we examine the plant group Solanum sect. Lycopersicon – a clade of 13 species, including the domesticated tomato (Solanum lycopersicum L.) and its wild relatives – along with four allied species in the immediate outgroups Solanum sects. Juglandifolia and Lycopersicoides. We summarize the geographic distribution and morphological characters of these plant groups, describing their evolutionary relationships in the context of a new taxonomic revision at the species level of all these groups. We provide an overview of the role that wild tomato species have played in the development of cytogenetic stocks, in classical and molecular genetic studies as well as in crop improvement through traditional and advanced tools. We discuss how the very narrow genetic basis of cultivated tomato germplasm has forced tomato geneticists and breeders to rely on the wealth of genetic variation present in the wild relatives to address the many breeding challenges. The numerous molecular mapping studies conducted using interspecific crosses have clearly demonstrated that the breeding value of exotic (wild) tomato germplasm goes far beyond its phenotype. These studies also show that we are still far from being able to fully exploit the breeding potential of the thousands of accessions stored in seed banks around the world, in addition to those that may still be found in natural habitats. Over the past decades, tomato breeders have been at the forefront of establishing new principles for crop breeding based on the use of wild species to improve modern cultivars. In this respect, among all model systems, the wild and domesticated species of the tomato clade have pioneered development of novel populations such as “exotic libraries.” These genetic resources, combined with the increasing knowledge deriving from the many “omics” tools, including the tomato genome sequence, are expected to further improve the efficiency with which wild tomato relatives will contribute to the improvement of this important crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J Am Soc Hortic Sci 131(2):637–645

    Google Scholar 

  • Albacete A, Martínez-Andúar C, Ghanem ME, Acosta M, Sánchez-Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez-Alfocea F (2009) Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ 32:928–938

    Article  PubMed  CAS  Google Scholar 

  • Albrecht E, Escobar M, Chetelat RT (2010) Genetic diversity and population structure in the tomato-like nightshades Solanum lycopersicoides and S. sitiens. Ann. Bot. 105:535–554

    Google Scholar 

  • Albrecht E, Chetelat RT (2009) Comparative genetic linkage map of Solanum sect Juglandifolia: evidence of chromosomal rearrangements and overall synteny with the tomatoes and related nightshades. Theor Appl Genet 118:831–847

    Article  PubMed  Google Scholar 

  • Alexander L, Lincoln RE, Wright A (1942) A survey of the genus Lycopersicon for resistance to the important tomato diseases occurring in Ohio and Indiana. Plant Dis Rep Suppl 136:51–85

    Google Scholar 

  • Alpert K, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    Article  Google Scholar 

  • Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292

    Article  CAS  Google Scholar 

  • Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484

    PubMed  CAS  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Google Scholar 

  • Arens P, Odinot P, van Heusden AW, Lindhout P, Vosman B (1995) GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome 38(1):84–90

    Article  PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

    Article  PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Ashrafi H, Kinkade M, Foolad MR (2009) A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 52:935–956

    Article  PubMed  CAS  Google Scholar 

  • Asins MJ, Bolarín MC, Pérez-Alfocea F, Estañ MT, Martínez-Andújar C, Albacete A, Villalta I, Bernet GP, Dodd IC (2010) Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? Theor Appl Genet 121:105–115

    Article  PubMed  CAS  Google Scholar 

  • Astua-Monge G, Minsavage GV, Stall RE, Vallejos E, Davis MJ, Jones JB (2000) Xv4-vrxv4: a new gene-for-gene interaction identified between Xanthomonas campestris pv. Vesicatoria Race T3 and the wild tomato relative Lycopersicon pennellii. Mol Plant Microbe Interact 13:1346–1355

    Article  PubMed  CAS  Google Scholar 

  • Azanza F, Young TE, Kim D, Tanksley SD, Juvik JA (1994) Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersion chmielewskii on tomato soluble solids, pH, and yield. Theor Appl Genet 87:965–972

    Article  CAS  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  Google Scholar 

  • Bai Y, Huang C-C, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16(2):169–176

    Google Scholar 

  • Bai Y, van der Hulst R, Huang CC, Wei L, Stam P, Lindhout P (2004) Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires muliallelic, single-locus markers. Theor Appl Genet 109:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant Microbe Interact 18(4):354–362

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Pim Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21(1):30–39

    Article  PubMed  CAS  Google Scholar 

  • Baldwin EA, Nisperos-Carriedo MO, Baker R, Scott JW (1991) Quantitative analysis of flavor parameters in six Florida tomato cultivars. J Agric Food Chem 39:1135–1140

    Article  CAS  Google Scholar 

  • Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theor Appl Genet 88:691–700

    Article  CAS  Google Scholar 

  • Balint-Kurti PJ, Jones DA, Jones JDG (1995) Integration of the classical and RFLP linkage maps of the short arm of tomato chromosome 1. Theor Appl Genet 90:17–26

    Article  CAS  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R, Hekkert BL, Orzaez D, Fernández-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  PubMed  CAS  Google Scholar 

  • Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U (2001) Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol Plant Microbe Interact 14:629–638

    Article  PubMed  CAS  Google Scholar 

  • Barone A, Frusciante L (2007) Molecular marker-assisted selection for resistance to pathogens in tomato. In: Guimaraes E, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome. Agriculture and Consumer Protection Dept, 978-92-5-105717-9, A1120 (ftp://ftp.fao.org/docrep/fao/010/a1120e/a1120e02.pdf), pp 151–164

  • Barone A, Chiusano ML, Ercolano MR, Giuliano G, Grandillo S, Frusciante L (2008) Structural and functional genomics of tomato. Int J Plant Genom 2008:820274

    Google Scholar 

  • Barone A, Di Matteo A, Carputo D, Frusciante L (2009) High-throughput genomics enhances tomato breeding efficiency. Curr Genom 10(1):1–9

    Article  CAS  Google Scholar 

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    Article  PubMed  CAS  Google Scholar 

  • Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Behare J, Laterrot H, Sarfatti M, Zamir D (1991) Restriction fragment length polymorphisms mapping of the Stemphylium resistance gene in tomato. Mol Plant Microbe Interact 4:489–492

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JD (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Biol Sci 181:109–135

    Google Scholar 

  • Bentham G, Hooker JD (1873) Solanaceae. Genera Planta 2:882–913

    Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    PubMed  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, López J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley SD (1998a) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180, erratum 1191–1196

    Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, López J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998b) Advanced backcross QTL analysis in tomato I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernatzky R (1993) Genetic mapping and protein product diversity of the self-incompatibility locus in wild tomato (Lycopersicon peruvianum). Biochem Genet 31(3–4):173–184

    Article  PubMed  CAS  Google Scholar 

  • Bernatzky R, Tanksley S (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    PubMed  CAS  Google Scholar 

  • Blauth SL, Steffens JC, Churchill GA, Mutschler MA (1999) Identification of QTLs controlling acylsugar fatty acid composition in an intraspecific population of Lycopersicon pennellii (Corr.) D’Arcy. Theor Appl Genet 99:376–381

    Article  Google Scholar 

  • Bohn GW, Tucker CM (1939) Immunity to Fusarium wilt in the tomato. Science 89:603–604

    Article  PubMed  CAS  Google Scholar 

  • Bohn GW, Tucker CM (1940) Studies on Fusarium wilt of the tomato. I. Immunity in Lycopersicon pimpinellifolium Mill. and its inheritance in hybrids. MO Agric Exp Stn Res Bull 311:82

    Google Scholar 

  • Bohs L (1994) Cyphomandra (Solanaceae). FL Neotrop Monogr 63:1–175

    Google Scholar 

  • Bohs L (1995) Transfer of Cyphomandra (Solanaceae) and its species to Solanum. Taxon 44:583–587

    Article  Google Scholar 

  • Bohs L (2005) Major clades in Solanum based on ndhF sequences. In: Keating RC, Hollowell VC, Croat TB (eds) A Festschrift for William G. D’Arcy: the legacy of a taxonomist. Monographs in Systematic Botany from the Missouri Botanical Garden, vol 104. Missouri Botanical Garden Press, St. Louis, MO, USA, pp 27–49

    Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Bohs L, Olmstead RG (1999) Solanum phylogeny inferred from chloroplast DNA sequence data. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, UK, pp 97–110

    Google Scholar 

  • Bohs L, Olmstead RG (2001) A reassessment of Normandia and Triguera (Solanaceae). Plant Syst Evol 228:33–48

    Article  CAS  Google Scholar 

  • Bonnema G, van Schipper D, Heusden S, Zabel P, Lindhout P (1997) Tomato chromosome 1: High-resolution genetic and physical mapping of the short arm in an interspecific Lycopersicon esculentum × L. peruvianum cross. Mol Gen Genet 253:455–462

    Article  PubMed  CAS  Google Scholar 

  • Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor Appl Genet 78:489–494

    Article  Google Scholar 

  • Bournival BL, Vallejos CE, Scott JW (1990) Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theor Appl Genet 79:641–645

    Article  Google Scholar 

  • Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97(9):4961–4966

    Article  PubMed  CAS  Google Scholar 

  • Bretó MP, Asins MJ, Carbonell EA (1993) Genetic variability in Lycopersicon species and their genetic relationships. Theor Appl Genet 86:113–120

    Article  Google Scholar 

  • Bretó MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88:395–401

    Article  Google Scholar 

  • Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58(6):1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Brommonschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126

    Article  PubMed  CAS  Google Scholar 

  • Brommonschenkel SH, Frary A, Tanksley SD (2000) The broadspectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250(1):39–49

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, St. Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, Jones ES, St. Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann W, Linger P, Wenner A, Koornneef M (1996) Improvement of post-chilling photosynthesis in tomato by sexual hybridisation with a Lycopersicon peruvianum line from elevated altitude. Adv Hortic Sci 10:215–218

    Google Scholar 

  • Budiman MA, Chang S-B, Lee S, Yang TJ, Zhang H-B, de Jong H, Wing RA (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196

    Article  PubMed  CAS  Google Scholar 

  • Caicedo AL, Schaal BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882

    Article  PubMed  CAS  Google Scholar 

  • Canady MA, Stevens MR, Barineau MS, Scott JW (2001) Tomato Spotted Wilt Virus (TSWV) resistance in tomato derived from Lycopersicon chilense Dun. LA 1938. Euphytica 117:19–25

    Article  Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  PubMed  CAS  Google Scholar 

  • Canady MA, Ji Y, Chetelat RT (2006) Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121

    Article  PubMed  CAS  Google Scholar 

  • Cassol T, St. Clair DA (1994) Inheritance of resistance to blackmold (Alternaria alternata (Fr.) Keissler) in two interspecific crosses of tomato (Lycopersicon esculentum × L. cheesmanii f. typicum). Theor Appl Genet 88:581–588

    Article  Google Scholar 

  • Causse M, Saliba-Colombani V, Lesschaeve I, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273–283

    Article  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55(403):1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Chaïb J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115(3):429–442

    Article  PubMed  CAS  Google Scholar 

  • Chaerani R, Smulders MJM, van der Linden CG, Vosman B, Stam P, Voorrips RE (2007) QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum x S. arcanum cross. Theor Appl Genet 114:439–450

    Article  PubMed  CAS  Google Scholar 

  • Chaguè V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112:934–944

    Article  PubMed  Google Scholar 

  • Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on an interspecific cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    CAS  Google Scholar 

  • Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645

    Article  PubMed  CAS  Google Scholar 

  • Chetelat RT (2006) Revised list of miscellaneous stocks. Rep Tomato Genet Coop 56:37–56

    Google Scholar 

  • Chetelat RT (2009) Nuclear DNA content in Solanum sect. Juglandifolium and Solanum sect. Lycopersicoides. Tomato Genet Coop Rep 59:11–13

    Google Scholar 

  • Chetelat RT, Ji Y (2007) Cytogenetics and evolution. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2, Tomato. Science, Enfield, NJ, USA, pp 77–112

    Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • Chetelat RT, Klann E, DeVerna JW, Yalle S, Bennett AB (1993) Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant J 4:643–650

    Article  CAS  Google Scholar 

  • Chetelat RT, DeVerna JW, Bennett AB (1995a) Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor Appl Genet 91:327–333

    CAS  Google Scholar 

  • Chetelat RT, DeVerna JW, Bennett AB (1995b) Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theor Appl Genet 91:334–339

    CAS  Google Scholar 

  • Chetelat RT, Cisneros P, Stamoa L, Rick CM (1997) A male-fertile Lycopersicon esculentum × Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 95:99–108

    Article  Google Scholar 

  • Chetelat RT, Rick CM, Cisneros P, Alpert KB, DeVerna JW (1998) Identification, transmission, and cytological behavior of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome 41:40–50

    CAS  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867

    PubMed  CAS  Google Scholar 

  • Chetelat RT, Pertuzé RA, Faundez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167:77–93

    Article  Google Scholar 

  • Child A (1990) A synopsis of Solanum subgenus Potatoe (G. Don) D’Arcy Tuberarium (Dunal) Bitter (s.l.). Feddes Rep 101:209–235

    Article  Google Scholar 

  • Chiusano ML, D'Agostino N, Traini A, Licciardello C, Raimondo E, Aversano M, Frusciante L, Monti L (2008) ISOL@: an Italian SOLAnaceae genomics resource. BMC Bioinformat 9(Suppl 2):S7

    Article  CAS  Google Scholar 

  • Chunwongse J, Bunn TB, Crossman C, Jiang J, Tanksley SD (1994) Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79

    Article  CAS  Google Scholar 

  • Chunwongse S, Doganlar C, Crossman JJ, Tanksley SD (1997) High-resolution genetic map of the Lv resistance locus in tomato. Theor Appl Genet 95:220–223

    Article  CAS  Google Scholar 

  • Chunwongse J, Chunwongse C, Black L, Hanson P (1998) Mapping of the Ph-3 gene for late blight from L. pimpinellifolium L 3708. Rep Tomato Genet Coop 48:13–14

    Google Scholar 

  • Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Hortic Sci Biotechnol 77(3):281–286

    CAS  Google Scholar 

  • Cirulli M, Alexander LJ (1966) A comparison of pathogenic isolates of Fusarium oxysporum f. lycopersici and different sources of resistance in tomato. Phytopathology 56:1301–1304

    Google Scholar 

  • Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Coaker GL, Meulia T, Kabelka EA, Jones AK, Francis DM (2002) A QTL controlling stem morphology and vascular development in Lycopersicon esculentum × Lycopersicon hirsutum (Solanaceae) crosses is located on chromosome 2. Am J Bot 89:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  PubMed  CAS  Google Scholar 

  • Correll DS (1958) A new species and some nomenclatural changes in Solanum section Tuberarium. Madroño 14:232–236

    Google Scholar 

  • Correll DS (1962) The potato and its wild relatives. Texas Research Foundation, Renner, TX, USA

    Google Scholar 

  • Cox S (2000) I Say Tomayto, You Say Tomahto. http://lamar.colostate.edu/~samcox/Tomato.html

  • D’Arcy WG (1972) Solanaceae studies II: typification of subdivisions of Solanum. Ann MO Bot Gard 59:262–278

    Article  Google Scholar 

  • D’Arcy WG (1987) The circumscription of Lycopersicon. Solanaceae Newsl 2:60–61

    Google Scholar 

  • D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, UK, pp 75–137

    Google Scholar 

  • D'Agostino N, Aversano M, Frusciante L, Chiusano ML (2007) TomatEST database: in silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res 35:D901–D905

    Article  PubMed  Google Scholar 

  • D'Agostino N, Traini A, Frusciante L, Chiusano ML (2009) SolEST database: a “one-stop shop” approach to the study of Solanaceae transcriptomes. BMC Plant Biol 9:142

    Article  PubMed  CAS  Google Scholar 

  • Danesh D, Aarons S, McGill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant Microbe Interact 7:464–471

    Article  PubMed  CAS  Google Scholar 

  • Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galapagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodivers 12:29–53

    Article  Google Scholar 

  • Davies JN (1966) Occurrence of sucrose in the fruit of some species of Lycopersicon. Nature 209(5023):640–641

    Article  CAS  Google Scholar 

  • Davis J, Yu D, Evans W, Gokirmak T, Chetelat RT, Stotz HU (2009) Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato. Theor Appl Genet 119:305–314

    Article  PubMed  Google Scholar 

  • De Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48

    Article  CAS  Google Scholar 

  • DeCandolle A (1886) Origin of cultivated plants. Hafner, New York, USA, 1959 reprint

    Google Scholar 

  • Dennett RK (1950) The association of resistance to Fusarium wilt and Stemphylium leaf spot disease in tomato, Lycopersicon esculentum. Proc Am Soc Hortic Sci 56:353–357

    Google Scholar 

  • DeVerna JW, Rick CM, Chetelat RT, Lanini BJ, Alpert KB (1990) Sexual hybridization of Lycopersicon esculentum and Solanum rickii by means of a sesquidiploid bridging hybrid. Proc Natl Acad Sci USA 87:9490–9496

    Article  Google Scholar 

  • deVicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178

    Google Scholar 

  • deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed  CAS  Google Scholar 

  • Dickinson MJ, Jones DA, Jones JD (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347

    Article  PubMed  CAS  Google Scholar 

  • Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319

    Article  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The Tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10(11):1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Doganlar S, Dodson J, Gabor B, Beck-Bunn T, Crossman C, Tanksley SD (1998) Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor Appl Genet 97:784–788

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Tanksley SD (2000) The genetic basis of seedweight variation: tomato as a model system. Theor Appl Genet 100:1267–1273

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002a) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Ku HM, Tanksley SD (2002b) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Dorst JCEA (1946) Een en twintigste beschrijvende rassenlijst voor landbouwgewassen. Rijkscommissie voor de samenstelling van de rassenlijst voor landbouwgewassen, Wageningen, p 221

    Google Scholar 

  • Dunal MF (1813) Histoire naturelle, médicale et économique des Solanum et des genres qui ont été confundus avec eux. (as cited in Luckwill 1943)

    Google Scholar 

  • Dunal MF (1852) Solanaceae. In: De Candolle AP (ed) Prodromus systematis naturalis regni vegetabilis. 13:450

    Google Scholar 

  • Egashira H, Kuwashima A, Ishiguro H, Fukushima K, Kaya T, Imanishi S (2000) Screening of wild accessions resistant to gray mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiol Plant 22:324–326

    Article  Google Scholar 

  • Ellis PR, Maxon-Smith JW (1971) Inheritance of resistance to potato cyst-eelworm (Heterodera rostochiensis Woll.) in the genus Lycopersicon. Euphytica 20:93–101

    Article  Google Scholar 

  • Ernst K, Kumar A, Kriseleit D, Kloos D-U, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31(2):127–136

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theor Appl Genet 88:891–897

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Eshed Y, Gera G, Zamir D (1996) A genome-wide search for wild species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886

    Article  CAS  Google Scholar 

  • Estañ MT, Villalta I, Bolarín MC, Carbonell EA, Asins MJ (2009) Identification of fruit yield loci controlling the salt tolerance conferred by Solanum rootstocks. Theor Appl Genet 118:305–312

    Article  PubMed  Google Scholar 

  • Farrar RR, Kennedy GG (1991) Insect and mite resistance in tomato. In: Kalloo G (ed) Genetic improvement of tomato of monographs on theoretical and applied genetics, vol 14. Springer, Berlin, Germany, pp 122–141

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult S (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Fei Z, Tang X, Alba R, Giovannoni J (2006) Tomato expression database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res 34:D766–D770

    Article  PubMed  CAS  Google Scholar 

  • Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P (2007a) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114:585–593

    Article  PubMed  Google Scholar 

  • Finkers R, van Heusden AW, Meijer-Dekens F, van Kan JAL, Maris P, Lindhout P (2007b) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080

    Article  PubMed  Google Scholar 

  • Finkers R, Bai Y, van den Berg P, van Berloo R, Meijer-Dekens F, ten Have A, van Kan J, Lindhout P, van Heusden AW (2008) Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica 159:83–92

    Article  Google Scholar 

  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J, Goldbach RW (1999) Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol Breed 5:197–207

    Article  CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth, New York, NY, USA, pp 613–684

    Google Scholar 

  • Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an interspecific cross of tomato (Lycopersicon esculentum × L. pennellii). Plant Cell Rep 17:306–312

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet 99:235–243

    Article  CAS  Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    Article  CAS  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240

    Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C, Rodríguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998a) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998b) RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Mol Breed 4:519–529

    Article  CAS  Google Scholar 

  • Foolad MR, Zang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zang LP, Khan AA, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104:945–958

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zang LP, Subbiah P (2003) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545

    Article  PubMed  CAS  Google Scholar 

  • Fosberg FR (1987) New nomenclatural combinations for Galapagos plant species. Phytologia 62:181–183

    Google Scholar 

  • Frary A, Doganlar S (2003) Comparative genetics of crop plant domestication and evolution. Turk J Agric For 27:59–69

    CAS  Google Scholar 

  • Frary A, Graham E, Jacobs J, Chetelat RT, Tanksley SD (1998) Identification of QTL for late blight resistance from L. pimpinellifolium L3708. Tomato Genet Coop Rep 48:19–21

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88

    Google Scholar 

  • Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley SD (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004a) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fritz LA, Tanksley SD (2004b) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533

    Article  PubMed  Google Scholar 

  • Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley SD (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Göl D, Keleş D, Okmen B, Pinar H, Siğva HO, Yemenicioğlu A, Doğanlar (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58

    Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Frodin D (2004) History and concepts of big plant genera. Taxon 53:753–776

    Article  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, López J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli E, Voirol E, López J, Pétiard V, Tanksley SD (2002a) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Fulton TM, van der Hoeven R, Eanetta NT, Tanksley SD (2002b) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Tanksley SD (1996) Recombination around the TM2a and Mi resistance genes in different crosses of Lycopersicon peruvianum. Theor Appl Genet 92:101–108

    Article  CAS  Google Scholar 

  • Ganal MW, Simon R, Brommonschenkel S, Arndt M, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact 8:886–891

    Article  PubMed  CAS  Google Scholar 

  • García-Martínez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49:648–656

    Article  PubMed  CAS  Google Scholar 

  • Garland S, Sharman M, Persley D, McGrath D (2005) The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Aust J Agric Res 56:285–289

    Article  CAS  Google Scholar 

  • Georgiady MS, Whitkus RW, Lord EM (2002) Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161:333–344

    PubMed  CAS  Google Scholar 

  • Gerrior S, Bente L (2002) Nutrient content of the U.S. food supply, 1909–1999: a summary report. USDA, Center for Nutrition Policy and Promotion, Washington, DC, USA

    Google Scholar 

  • Gidoni D, Fuss E, Burbidge A, Speckmann GJ, James S, Nijkamp D, Mett A, Feiler J, Smoker M, de Vroomen MJ, Leader D, Liharska T, Groenendijk J, Coppoolse E, Smit JJ, Levin I, de Both M, Schuch W, Jones JD, Taylor IB, Theres K, van Haren MJ (2003) Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol Biol 51:83–98

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JC, McGuire DC (1956) Inheritance of resistance to several rootknot from Meloidogyne incognita in commercial type tomatoes. Proc Am Soc Hortic Sci 68:437–442

    Google Scholar 

  • Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert K, Tanksley SD (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet 248:195–206

    Article  PubMed  CAS  Google Scholar 

  • Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum × Lycopersicon cheesmanii cross. Theor Appl Genet 90:925–932

    Article  Google Scholar 

  • Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656

    Article  PubMed  Google Scholar 

  • Gorguet B, Eggink PM, Ocaña J, Tiwari A, Schipper D, Finkers R, Visser RGF, van Heusden AW (2008) Mapping characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet 116:755–767

    Article  PubMed  Google Scholar 

  • Graham EB (2005) Genetic diversity and crossing relationships of Lycopersicon chilense. PhD Thesis, University of California, Davis, CA, USA, 157 p

    Google Scholar 

  • Graham EB, Shannon SM, Petersen JP, Chetelat RT (2003) A self-compatible population of Lycoperisicon peruvianum collected from N. Chile. Rep Tomato Genet Coop 53:22–24

    Google Scholar 

  • Grandillo S, Tanksley SD (1996a) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996b) Genetic analysis of RFLPs. GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol Breed 2:251–260

    Article  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999a) Identifying loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Grandillo S, Zamir D, Tanksley SD (1999b) Genetic improvement of processing tomatoes: a 20-year perspective. Euphytica 110:85–97

    Article  Google Scholar 

  • Grandillo S, Monforte AJ, Fridman E, Zamir D, Tanksley SD (2000) Agronomic characterization of a set of near-isogenic lines derived from a Lycopersicon esculentum × L. hirsutum cross. In: XLIV Convegno Annuale della Società Italiana di Genetica Agraria (SIGA), Bologna, Italy, 20–23 Sept 2000, p 78

    Google Scholar 

  • Grandillo S, Tanksley SD, Zamir D (2008) Exploitation of natural biodiversity through genomics. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 1, Genomics approaches and platforms. Springer, Dordrecht, Netherlands, pp 121–150

    Google Scholar 

  • Grant V (1975) Genetics of flowering plants. Columbia University Press, New York, USA

    Google Scholar 

  • Griffiths PD, Scott JW (2001) Inheritance and linkage of Tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hortic Sci 126:462–467

    CAS  Google Scholar 

  • Guo Z, Weston PA, Snyder JC (1993) Repellency to two-spotted spider mite, Tetranychus urticae Koch, as related to leaf surface chemistry of Lycopersicon hirsutum accessions. J Chem Ecol 19:2965–2979

    Article  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245

    Article  PubMed  CAS  Google Scholar 

  • Haanstra JPW, Laugé R, Meijer-Dekens F, Bonnema G, de Wit PJGM, Lindhout P (1999a) The Cf-ECP2 gene is linked to, but not part of the Cf-4/Cf-9 cluster on the short arm of chromosome 1 in tomato. Mol Gen Genet 262:839–845

    Article  PubMed  CAS  Google Scholar 

  • Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van der Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999b) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicum esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Haanstra JPW, Meijer-Dekens F, Laugé R, Seetanah DC, Joosten MHAJ, de Wit PJGM, Lindhout P (2000) Mapping strategy for resistance genes against Cladosporium fulvum on the short arm of chromosome 1 of tomato: Cf-ECP5 near the Hcr9 milky way cluster. Theor Appl Genet 101:661–668

    Article  CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 15:15–20

    Google Scholar 

  • Hanson P, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18

    Google Scholar 

  • Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–325

    Article  Google Scholar 

  • Hawkes JG (1990) The potato: evolution biodiversity and genetic resources. Belhaven, London, UK

    Google Scholar 

  • Hedrick UP, Booth NO (1907) Mendelian characters in tomatoes. Proc Am Soc Hortic Sci 5:19–24

    Google Scholar 

  • Heine H (1976) Flora de la Nouvelle Caledonie, vol 7. Museum National D’Histoire Naturelle, Paris, France

    Google Scholar 

  • Helentjaris T, King G, Slocum M, Siedenstrang C, Wegman S (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol Biol 5:109–118

    Article  CAS  Google Scholar 

  • Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409–418

    Article  PubMed  CAS  Google Scholar 

  • Hewitt JD, Garvey TC (1987) Wild sources of high soluble solids in tomato. In: Nevins DJ, Jones RA, Liss AR (eds) Tomato biotechnology, vol 4. Alan R Liss, New York, NY, USA, pp 45–54

    Google Scholar 

  • Hogenboom NG (1970) Inheritance of resistance to corky root in tomato (Lycopersicon esculentum UM Mill.). Euphytica 19:413–425

    Article  Google Scholar 

  • Holmes FO (1957) True-breeding resistance in tomato to infection by tobacco-mosaic virus. Phytopathology 47:16–17

    Google Scholar 

  • Holtan HEE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165:1541–1550

    PubMed  CAS  Google Scholar 

  • Hoogstraten JGJ, Braun CJ (2005) Methods for coupling resistance alleles in tomato. U.S. Patent Pending 20050278804. Date published 15 Dec 2005

    Google Scholar 

  • Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000a) Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924

    Article  CAS  Google Scholar 

  • Huang CC, Hoefs-Van De Putte PM, Haanstra-Van Der Meer JG, Meijer-Dekens F, Lindhout P (2000b) Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato. Heredity 85:511–520

    Article  PubMed  CAS  Google Scholar 

  • Hunziker AT (1979) South American Solanaceae: a synoptic survey. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of Solanaceae. Academic, London, UK, pp 49–85

    Google Scholar 

  • Hunziker AT (2001) Genera Solanacearum, the genera of Solanaceae illustrated arranged according to a new system. ARG Gantner, Ruggell, Germany

    Google Scholar 

  • Ignatova SI, Gorshkova NS, Tereshonkova TA (2000) Resistance of tomato F1 hybrids to grey mold. Acta Physiol Plant 22:326–328

    Article  Google Scholar 

  • Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA 104:13833–13838

    Article  PubMed  CAS  Google Scholar 

  • Jablonska B, Ammiraju JSS, Bhattarai KK, Mantelin S, de Ilarduya OM, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044–1054

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379–392

    Article  Google Scholar 

  • Jensen KS, Martin CT, Maxwell DP (2007) A CAPS marker, FER-G8, for detection of Ty3 and Ty3a alleles associated with S. chilense introgressions for begomovirus resistance in tomato breeding lines. University of Wisconsin-Madison. http://www.plantpath.wisc.edu/pp-old/GeminivirusResistantTomatoes/Markers/MAS-Protocols/Ty3a-CAPS.pdf

  • Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989

    PubMed  CAS  Google Scholar 

  • Ji Y, Scott JW (2005) Identification of RAPD markers linked to Lycopersicon chilense derived begomovirus resistant gene on cromosome 6 of tomato. In: Ist international symposium on tomato diseases. Acta Hortic 695:407–416

    Google Scholar 

  • Ji Y, Scott JW (2007) Tomato. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. Ser 4: Vegetable crops. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Ji Y, Pertuzé R, Chetelat RT (2004) Genome differentiation by GISH in interspecic and intergeneric hybrids of tomato and related nightshades. Chrom Res 12:107–116

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    Article  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato infecting begomoviruses. In: Czosnek H (ed) Tomato Yellow Leaf Curl virus disease: management, molecular biology, breeding for resistance. Kluwer, Dordrecht, Netherlands, pp 343–362

    Chapter  Google Scholar 

  • Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009a) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hortic Sci 134(2):281–288

    Google Scholar 

  • Ji Y, Scott JW, Schuster DJ (2009b) Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. HortScience 44(3):614–618

    Google Scholar 

  • Jiménez-Gómez JM, Alonso-Blanco C, Borja A, Anastasio G, Angosto T, Lozano R, Martínez-Zapater M (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50:303–315

    Article  PubMed  CAS  Google Scholar 

  • Jones DF (1917) Linkage in Lycopersicon. Am Nat 51:608–621

    Article  Google Scholar 

  • Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant Microbe Interact 6:348–357

    Article  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Jussieu AL (1789) Genera plantarum. Herissant V & Barrios T, Paris, France

    Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510

    Article  PubMed  CAS  Google Scholar 

  • Kabelka E, Yang W, Francis DM (2004) Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. J Am Soc Hortic Sci 129(2):250–257

    CAS  Google Scholar 

  • Kalloo G (1991) Genetic improvement of tomato. Springer, Berlin, Germany

    Google Scholar 

  • Kalloo G, Banerjee MK (1990) Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 105:156–159

    Article  Google Scholar 

  • Kamenetzky L, Asís R, Bassi S, de Godoy F, Bermúdez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152(4):1772–1786

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome 41:91–95

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98(11):6511–6515

    Article  PubMed  CAS  Google Scholar 

  • Kebede H, Martin B (1994) Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci 34:108–113

    Article  Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GG (2007) Resistance in tomato and other Lycopersicon species to insect and mite pests. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2, tomato. Science, Enfield, NH, USA, pp 488–519

    Google Scholar 

  • Kerr EA, Bailey DL (1964) Resistance to Cladosporium fulvum cke. obtained from wild species of tomato. Can J Bot 42(11):1541–1554

    Article  Google Scholar 

  • Khush GS (1963) Identification key for pachytene chromosomes of L. esculentum. Tomato Genet Coop Rep 13:12–13

    Google Scholar 

  • Khush GS, Rick CM (1963) Meiosis in hybrids between Lycopersicon esculentum and Solanum pennellii. Genetica 33:167–183

    Article  Google Scholar 

  • Khush GS, Rick CM (1966) The origin, identification, and cytogenetic behavior of tomato monosomics. Chromosoma 18:407–420

    Article  Google Scholar 

  • Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23:452–484

    Article  Google Scholar 

  • Kinzer SM, Schwager SJ, Mutschler MA (1990) Mapping of ripening-related or -specific cDNA clones of tomato (Lycopersicon esculentum). Theor Appl Genet 79:489–496

    Article  CAS  Google Scholar 

  • Kiss L, Cook RTA, Saenz GS, Cunnington JH, Takamatsu S, Pascoe I, Bardin M, Nicot PC, Sato Y, Rossman AY (2001) Identification of two powdery mildew, Oidium neolycopersici sp. nov. and Oidium lycopersici, infecting tomato in different parts of the world. Mycol Res 105:684–697

    Article  Google Scholar 

  • Klein-Lankhorst R, Rietveld P, Machiels B, Verkerk R, Weide R, Gebhardt C, Koornneef M, Zabel P (1991) RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor Appl Genet 81:661–667

    Article  CAS  Google Scholar 

  • Knapp S (1991) A revision of Solanum sessile species group (section Geminata pro parte: Solanaceae). Bot J Linn Soc 105:179–210

    Article  Google Scholar 

  • Knapp S (2000) A revision of Solanum thelopodium species group (section Anthoresis sensu Sheite, pro parte): Solanaceae. Bull Nat Hist Mus London (Bot) 30:13–30

    Google Scholar 

  • Knapp S (2002) Solanum section Geminata. FL Neotrop 84:1–405

    Google Scholar 

  • Knapp S, Darwin SC (2007) Proposal to conserve the name Solanum cheesmaniae (L. Riley) Fosberg against S. cheesmanii Geras. (Solanaceae). Taxon 55:806–807

    Article  Google Scholar 

  • Kole C, Ashrafi H, Lin G, Foolad M (2006) Identification and molecular mapping of a new R gene, Ph-4, conferring resistance to late blight in tomato. In: Solanaceae conference, University of Wisconsin, Madison, Abstr 449

    Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  PubMed  CAS  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42(5):459–463

    Article  PubMed  CAS  Google Scholar 

  • Ku HM, Doganlar S, Chen K-Y, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 9:844–850

    Article  Google Scholar 

  • Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878

    Article  CAS  Google Scholar 

  • Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, Scott JW, Gonzalo MJ, Francis D, Yang W, van der Knaap E, Baldo AM, Smith-White B, Mueller LA, Prince JP, Blanchard NE, Storey DB, Stevens MR, Robbins MD, Wang JF, Liedl BE, O’Connell MA, Stommel JR, Aoki K, Iijima Y, Slade AJ, Hurst SR, Loeffler D, Steine MN, Vafeados D, McGuire C, Freeman C, Amen A, Goodstal J, Facciotti D, Van Eck J, Causse M (2007) Tomato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5, Vegetables. Springer, Berlin, Germany, pp 1–96

    Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable Tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    Article  PubMed  CAS  Google Scholar 

  • Lanfermeijer FC, Jiang G, Ferwerda MA, Dijkhuis J, de Haan P, Yang R, Hille J (2004) The durable resistance gene Tm-2 2 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity. Plant Sci 167:687–692

    Article  CAS  Google Scholar 

  • Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2 2 resistance genes from tomato differ in four amino acids. J Exp Bot 56:2925–2933

    Article  PubMed  CAS  Google Scholar 

  • Langford AN (1937) The parasitism of Cladosporium fulvum Cooke and the genetics of resistance to it. Can J Res 15:108–128

    Article  Google Scholar 

  • Laterrot H (1976) Localisation chromosomique de 12 chez la tomate controlant Ia resistance au pathotype 2 de Fusarium oxysporum f. lycopersici. Ann Amelior Plant 26:485–491

    Google Scholar 

  • Laterrot H (1983) La lutte genetique contre la maladie des racines liegueses de la tomate. Rev Hortic 238:143–150

    Google Scholar 

  • Laterrot H (2000) Disease resistance in tomato: practical situation. Acta Physiol Plant 22(3):328–331

    Article  Google Scholar 

  • Laugé R, Dmitriev AP, Joosten MHAJ, De Wit PJGM (1998a) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant Microbe Interact 11(4):301–308

    Article  Google Scholar 

  • Laugé R, Joosten MHAJ, Haanstra JPW, Goodwin PH, Lindhout P, De Wit PJGM (1998b) Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci USA 95:9014–9018

    Article  PubMed  Google Scholar 

  • Laugé R, Goodwin PH, De Wit PJGM, Joosten MHAJ (2000) Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant J 23:735–745

    Article  PubMed  Google Scholar 

  • Lawson DM, Lunde CF, Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3:307–317

    Article  CAS  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004a) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004b) Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14

    Article  CAS  Google Scholar 

  • Levesque H, Vedel E, Mathieu C, de Coureel AJL (1990) Identification of a short rDNA spacer sequence highly specific of a tomato line containing Tm-1 gene introgressed from Lycopersicon hirsutum. Theor Appl Genet 80:602–608

    Article  CAS  Google Scholar 

  • Levin I, Gilboa N, Teselson E, Shen S, Schaffer AA (2000) Fgr, a major locus that modifies fructose to glucose ratio in mature tomato fruits. Theor Appl Genet 100:256–262

    Article  CAS  Google Scholar 

  • Levin I, Lalazar A, Bar M, Schaffer AA (2004) Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit. Ind Crops Products 20:29–36

    Article  CAS  Google Scholar 

  • Lim GTT, Wang GP, Hemming MN, McGrath DJ, Jones DA (2008) High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theor Appl Genet 118(1):57–75

    Article  PubMed  CAS  Google Scholar 

  • Lincoln RE, Porter JW (1950) Inheritance of beta-carotene in tomatoes. Genetics 35:206–211

    PubMed  CAS  Google Scholar 

  • Lindhout P, Pet G, Van der Beek H (1994a) Screening wild Lycopersicon species for resistance to powdery mildew (Oidium lycopersicum). Euphytica 72:43–49

    Article  Google Scholar 

  • Lindhout P, Van der Beek H, Pet G (1994b) Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium licopersicum): mapping of the resistance gene Ol-1 on cromosome 6 of L. hirsutum. Acta Hortic 376:387–394

    CAS  Google Scholar 

  • Lindhout P, Heusden S, Pet G, Ooijen JW, Sandbrink H, Verkerk R, Vrielink R, Zabel P (1994c) Perspectives of molecular marker assisted breeding for earliness in tomato. Euphytica 79:279–286

    Article  CAS  Google Scholar 

  • Linkage Committee (1973) Linkage summary. Tomato Genet Coop 23:9–11

    Google Scholar 

  • Linnaeus C (1753) Species plantarum, 1st edn. L. Salvius, Stockholm, Sweden

    Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  PubMed  CAS  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zamir D (1999) Second generation L. pennellii introgression lines and the concept of bin mapping. Rep Tomato Genet Coop 49:26–30

    Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207

    Article  PubMed  CAS  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, Van Wijk RIK, Kyle Jahn M (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Lobo MA, Navarro R (1987) Late blight horizontal resistance in L. esculentum × L. hirsutum hybrids. Tomato Genet Coop Rep 37:52–54

    Google Scholar 

  • Loh YT, Martin G (1995) The disease-resistance gene Pto and the fenthion-sensitivity gene Fen encode closely related functional protein kinases. Proc Natl Acad Sci USA 92:4181–4184

    Article  PubMed  CAS  Google Scholar 

  • Lough RC (2003) Inheritance of tomato late blight resistance in Lycopersicon hirsutum LA1033. Thesis, North Carolina State University, Raleigh, NC, USA. http://www.lib.ncsu.edu/theses/available/etd-04172003-231125/unrestricted/etd.pdf

  • Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomical survey of the wild and cultivated tomatoes. Aberdeen Univ Stud 120:1–44

    Google Scholar 

  • Lukyanenko AN (1991) Disease resistance in tomato. In: Kalloo G (ed) Genetic improvement of tomato, vol 14, Monographs on theoretical and applied genetics. Springer, Berlin, Germany, pp 99–119

    Google Scholar 

  • MacBride JF (1962) Solanaceae. In: Flora of Peru. Field Mus Nat Hist Bot Ser 13:3–267

    Google Scholar 

  • Maliepaard C, Bas N, Van Heusden S, Kos J, Pet G, Verkerk R, Vrielink R, Zabel P, Lindhout P (1995) Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum × Lycopersicon hirsutum f. glabratum. Heredity 75:425–433

    Article  Google Scholar 

  • Mangin B, Thoquet P, Olivier J, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172

    PubMed  CAS  Google Scholar 

  • Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222

    Article  CAS  Google Scholar 

  • Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243(4899):1725–1728

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein-kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Tauer CG, Lin RK (1999) Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci 39:1775–1783

    Article  Google Scholar 

  • Mathieu S, Dal Cin V, Fei Z, Li H, Bliss P, Taylor MG, Klee HJ, Tieman DM (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 60(1):325–337

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  PubMed  CAS  Google Scholar 

  • McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667

    PubMed  CAS  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2(10):e347

    Article  PubMed  CAS  Google Scholar 

  • McGrath DJ, Gillespie D, Vawdrey L (1987) Inheritance of resistance to Fusarium oxysporium f.sp. lycopersici races 2 and 3 in Lycopersicon pennellii. Aust J Agric Res 38(4):729–733

    Article  Google Scholar 

  • Medina-Filho P (1980) Linkage of Aps-1, Mi and other markers on chromosome 6. Tomato Genet Coop Rep 30:26–28

    Google Scholar 

  • Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38(5):861–872

    Article  PubMed  CAS  Google Scholar 

  • Menzel MY (1962) Pachytene chromosomes of the intergeneric hybrid Lycopersicon esculentum × Solanum lycopersicoides. Am J Bot 49:605–615

    Article  Google Scholar 

  • Mesbah LA, Kneppers TJA, Takken FLW, Laurent P, Hille J, Nijkamp HJJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–57

    Article  PubMed  CAS  Google Scholar 

  • Messeguer R, Ganal M, de Vicente MC, Young ND, Bolkan H, Tanksley SD (1991) High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536

    Article  CAS  Google Scholar 

  • Michelson I, Zamir D, Czosnek H (1994) Accumulation and translocation of tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84(9):928–933

    Article  CAS  Google Scholar 

  • Miller P (1731) The Gardener’s dictionary, 1st edn. John and Francis, Rivington, London, UK

    Google Scholar 

  • Miller P (1754) The Gardener’s dictionary, Abridged 4th edn. John and James. Rivington, London, UK

    Google Scholar 

  • Miller P (1807) The Gardener’s and botanist’s dictionary, Posthumous edn. Thomas Martyn, Cambridge, UK

    Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Valerie M, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    PubMed  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Asins AJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772

    Article  Google Scholar 

  • Monforte AJ, Asins AJ, Carbonell EA (1997a) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293

    Article  CAS  Google Scholar 

  • Monforte AJ, Asins AJ, Carbonell EA (1997b) Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713

    Article  Google Scholar 

  • Monforte AJ, Asins AJ, Carbonell EA (1999) Salt tolerance in Lycopersicon spp VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98:593–601

    Article  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant Microbe Interact 11(4):259–269

    Article  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    Article  PubMed  CAS  Google Scholar 

  • Moyle LC (2007) Comparative genetics of potential prezygotic and postzygotic isolating barriers in a Lycopersicon Species cross. J Hered 98(2):123–135

    Article  PubMed  CAS  Google Scholar 

  • Moyle LC (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 62(12):2995–3013

    Article  PubMed  Google Scholar 

  • Moyle LC, Graham EB (2005) Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum. Genetics 169:355–373

    Article  PubMed  CAS  Google Scholar 

  • Moyle LC, Nakazato T (2008) Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 179:1437–1453

    Article  PubMed  Google Scholar 

  • Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Bins J, Lin C, Wright MH, Ahrens R, Wang Y et al (2005a) The SOL genomics network (SGN): a comparative resource for Solanaceous biology and beyond. Plant Physiol 138:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, Zamir D (2005b) The tomato sequencing project, the first cornerstone of the international Solanaceae project (SOL). Comp Funct Genom 6(3):153–158

    Article  CAS  Google Scholar 

  • Mueller LA, Klein Lankhorst R, Tanksley SD, Giovanonni JJ et al (2009) A snapshot of the emerging tomato genome sequence: the tomato genome sequencing consortium. Plant Genome 2:78–92

    Article  CAS  Google Scholar 

  • Muigai SG, Bassett MJ, Schuster DJ, Scott JW (2003) Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 31(1):27–38

    Article  Google Scholar 

  • Müller CH (1940) A revision of the genus Lycopersicon. USDA Misc Publ 382:1–28

    Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157

    Article  PubMed  CAS  Google Scholar 

  • Mutschler MA (2006) Combining field and laboratory methods in tomato breeding strategies. Acta Hortic 724:23–27

    Google Scholar 

  • Mutschler MA, Tanksley SD, Rick CM (1987) Linkage maps of the tomato (Lycopersicon esculentum). Rep Tomato Genet Coop 37:5–34

    Google Scholar 

  • Mutschler MA, Doerge RW, Liu S-C, Kuai JP, Liedl BE, Shapiro JA (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theor Appl Genet 92:709–718

    Article  CAS  Google Scholar 

  • Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62(4):774–792

    Article  PubMed  CAS  Google Scholar 

  • Nash AF, Gardner RG (1988) Tomato early blight resistance in a breeding line derived from Lycopersicon hirsutum PI 126445. Plant Dis 72:206–209

    Article  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    PubMed  CAS  Google Scholar 

  • Nienhuis J, Helentjarims M, Slocum B, Ruggero B, Schaffer A (1987) Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27:797–803

    Article  Google Scholar 

  • Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99

    Article  PubMed  Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet 92:151–156

    Article  CAS  Google Scholar 

  • Olmstead RG, Palmer JD (1997) Implications for phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29

    Article  Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137

    Google Scholar 

  • Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521–532

    Article  PubMed  CAS  Google Scholar 

  • Orsi CH, Tanksley SD (2009) Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet 5(1):e1000347

    Article  PubMed  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Fobes JF (1987) Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor Appl Genet 73:350–356

    Article  CAS  Google Scholar 

  • Osborn TC, Kramer C, Graham E, Braun CJ (2007) Insights and innovations from wide crosses: examples from canola and tomato. Crop Sci 47(S3):S228–S237

    Google Scholar 

  • Paddock EF (1950) A tentative assignment of Fusarium-immunity locus to linkage group 5 in tomato. Genetics 35:683–684

    Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Liu Y-S, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  Google Scholar 

  • Paran I, Goldman I, Zamir D (1997) QTL analysis of morphological traits in a tomato recombinant inbred line population. Genome 40:242–248

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BBH, Jones JDG (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf- 4/9 locus of tomato. Cell 91:821–832

    Article  PubMed  CAS  Google Scholar 

  • Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C (2002) Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet 105:855–861

    Article  PubMed  CAS  Google Scholar 

  • Parrella G, Moretti A, Gognalons P, Lesage M-L, Marchoux G, Gebre-Selassie K, Caranta C (2004) The Am gene controlling resistance to Alfalfa mosaic virus in tomato is located in the cluster of dominant resistance genes on chromosome 6. Phytopathology 94:345–350

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–741

    PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Patterson BD (1988) Genes for cold resistance from wild tomatoes. HortScience 23:794–947

    Google Scholar 

  • Peirce LC (1971) Linkage test with Ph conditioning resistance to race 0 Phytophthora infestans. Rep Tomato Genet Coop 21:30

    Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by deisgn. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [MILL.] Wettst. Subsection Lycopersicon). Am J Bot 88(10):1888–1902

    Article  PubMed  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2005) Morphological characterization and relationships of wild tomatoes (Solanum L. Sect. Lycopersicon). American Phytopathology Society (APS), St. Paul, MN, USA, 32 p

    Google Scholar 

  • Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2, tomato. Science, Enfield, NH, USA, pp 1–27

    Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Syst Bot 30(2):424–434

    Article  Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sections Lycopersicoides, Juglandifolia, Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186

    Google Scholar 

  • Pereira NE, Leal NR, Pereira MG (2000) Controle genético da concentração de 2-tridecanona e de 2-undecanona em cruzamentos interespecifícos de tomateiro. Bragantia 59(2):165–172

    Article  CAS  Google Scholar 

  • Pertuzé RA, Ji Y, Chetelat RT (2002) Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45:1003–1012

    Article  PubMed  Google Scholar 

  • Pertuzé RA, Ji Y, Chetelat RT (2003) Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. Theor Appl Genet 107:1391–1401

    Article  PubMed  Google Scholar 

  • Peters JL, Széll M, Kendrick RE (1998) The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol 117:797–807

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Price HJ, Johnston JS, Stack SM (1996) DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39:77–82

    Article  PubMed  CAS  Google Scholar 

  • Pillen K, Ganal MW, Tanksley SD (1996a) Construction of a high-resolution genetic map and YAC-contigs in the tomato Tm-2a region. Theor Appl Genet 93:228–233

    Article  CAS  Google Scholar 

  • Pillen K, Pineda O, Lewis CB, Tanksley SD (1996b) Status of genome mapping tools in the taxon Solanaceae. In: Paterson AH (ed) Genome mapping in plants. RG Landes, Austin, TX, pp 282–308

    Google Scholar 

  • Pitblado RE, MacNeil BH, Kerr EA (1984) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato in tomato. Can J Plant Pathol 6:48–53

    Article  Google Scholar 

  • Plunknett DL, Smith NJH, Williams JT, Murthi-Anishetti N (1987) Gene banks and the world’s food. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    PubMed  CAS  Google Scholar 

  • Powers L (1941) Inheritance of quantitative characters in crosses involving two species of Lycopersicon. J Agric Res 63:149–175

    Google Scholar 

  • Prudent M, Causse M, Génard M, Tripodi P, Grandillo S, Bertin N (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J Exp Bot 60(3):923–937

    Article  PubMed  CAS  Google Scholar 

  • Ranc N, Muños S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130

    Article  PubMed  Google Scholar 

  • Rick CM (1951) Hybrid between Lycopersicoides esculentum Mill. and Solanum lycopersicoides Dun. Genetics 37:741–744

    CAS  Google Scholar 

  • Rick CM (1956) Genetic and systematic studies on accessions of Lycopersicon from the Galapagos islands. Am J Bot 43:687–696

    Article  Google Scholar 

  • Rick CM (1963) Barriers to interbreeding in Lycopersicon peruvianum. Evolution 17:216–232

    Article  Google Scholar 

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753–768

    PubMed  CAS  Google Scholar 

  • Rick CM (1971) Further studies on segregation and recombination in backcross derivatives of a tomato species hybrid. Biol Zentralbl 90:209–220

    Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes and populations. Plenum, New York, NY, USA, pp 255–269

    Google Scholar 

  • Rick CM (1974) High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493–510

    Google Scholar 

  • Rick CM (1975) The tomato. In: King RC (ed) Handbook of genetics, vol 2. Plenum, New York, NY, USA, pp 247–280

    Google Scholar 

  • Rick CM (1976) Tomato Lycopersicon esculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 268–273

    Google Scholar 

  • Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of Solanaceae, Linn Soc Symp Ser 7. Academic, New York, NY, USA, pp 667–677

    Google Scholar 

  • Rick CM (1982) The potential of exotic germplasm for tomato improvement. In: Vasil IK, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic, New York, NY, pp 1–28

    Google Scholar 

  • Rick CM (1986a) Germplasm resources in the wild tomato species. Acta Hortic 190:39–47

    Google Scholar 

  • Rick CM (1986b) Potential contributions of wide crosses to improvement of processing tomatoes. HortScience 21:881

    Google Scholar 

  • Rick CM (1986c) Reproductive isolation in the Lycopersicon peruvianum complex. In: D'Arcy WG (ed) Solanaceae biology and systematics. Columbia University Press, New York, NY, USA, pp 477–496

    Google Scholar 

  • Rick CM (1987) Seedling traits of primary trisomics. Rep Tomato Genet Coop 37:60–61

    Google Scholar 

  • Rick CM (1988) Tomato-like nightshades: affinities, autoecology, and breeders opportunities. Econ Bot 42:145–154

    Article  Google Scholar 

  • Rick CM (1990) New or otherwise noteworthy accessions of wild tomato species. Tomato Genet Coop Rep 40:30

    Google Scholar 

  • Rick CM (1995) Tomato. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, London, pp 452–457

    Google Scholar 

  • Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hortic 412:21–38

    Google Scholar 

  • Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torr Bot Club 102:376–384

    Article  Google Scholar 

  • Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot 44:69–78

    Article  Google Scholar 

  • Rick CM, Tanksley SD (1981) Genetic variation in Solanum pennellii: comparisons with two other sympatric tomato species. Plant Syst Evol 139:11–45

    Article  Google Scholar 

  • Rick CM, Yoder JI (1988) Classical and molecular genetics of tomato: highlights and perspectives. Annu Rev Genet 22:281–300

    Article  PubMed  CAS  Google Scholar 

  • Rick CM, Kesicki E, Fobes JF, Holle M (1976) Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandean Peru. Theor Appl Genet 47:55–68

    Article  CAS  Google Scholar 

  • Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170

    Article  Google Scholar 

  • Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Syst Evol 129:31–44

    Article  Google Scholar 

  • Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298

    Article  Google Scholar 

  • Rick CM, Laterrot H, Philouze J (1990) A revised key for the Lycopersicon species. Tomato Genet Coop Rep 40:31

    Google Scholar 

  • Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436

    Article  PubMed  CAS  Google Scholar 

  • Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, St.Clair DA (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    Article  CAS  Google Scholar 

  • Robertson NF (1991) The challenge of Phytophthora infestans. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 10. Academic, London, pp 1–30

    Google Scholar 

  • Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum var. esculentum) and wild relatives. In: Razdan MK, Mattoo AK (eds.) Genetic improvement of Solanaceous crops, vol 2: Tomato. Science, Enfield, NH, USA, pp 25–75

    Google Scholar 

  • Ronen GL, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genom 274:346–353

    Article  CAS  Google Scholar 

  • Rush DW, Epstein E (1981) Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domestic tomato. J Am Soc Hortic Sci 106:699–704

    Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40

    Article  PubMed  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissiera A (2009) A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317

    Article  PubMed  CAS  Google Scholar 

  • Salmeron J, Oldroyd G, Rommens C, Scofield S, Kim H-S, Lavelle D, Dahlbeck D, Staskawicz B (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Sandbrink JM, van Ooijen JW, Purimahua CC, Vrielink M, Verkerk R, Zabel P, Lindhout P (1995) Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theor Appl Genet 90:444–450

    Article  CAS  Google Scholar 

  • Sanseverino W, Roma G, De Simone M, Faino L, Melito S, Stupka E, Frusciante L, Ercolano MR (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38:D814–D821

    Article  PubMed  CAS  Google Scholar 

  • Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor Appl Genet 78:755–759

    Article  CAS  Google Scholar 

  • Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26

    Article  CAS  Google Scholar 

  • Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruits of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56:297–307

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    Article  PubMed  CAS  Google Scholar 

  • Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37(1):46–60, Erratum Plant J 37(5):787

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Ganal M, Theres K (1995) Genetic and physical mapping of the lateral suppressor (ls) locus in tomato. Mol Gen Genet 246:761–766

    Article  PubMed  CAS  Google Scholar 

  • Scott JW (1984) Genetic source of tomato firmess. In: Proceedings of 4th tomato quality workshop, Miami, FL, USA, 7 Mar 1983, pp 60–67

    Google Scholar 

  • Scott JW, Gardner RG (2007) Breeding for resistance to fungal pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2: Tomato. Science, Enfield, NH, pp 421–456

    Google Scholar 

  • Scott JW, Jones JP (1989) Monogenic resistance in tomato to Fusarium oxysporum f. sp. Lycopersici race 3. Euphytica 40:49–53

    Google Scholar 

  • Scott JW, Olson SM, Howe TK, Stoffella PJ, Bartz JA, Bryan HH (1995) Equinox’ heat-telerant hybrid tomato. HortScience 30:647–648

    Google Scholar 

  • Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. J Am Soc Hortic Sci 129:394–400

    CAS  Google Scholar 

  • Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Sarfatti M, Schaffer MA, Ori N, Zamir D, Fluhr R (1992) Correlation of genetic and physical structure in the region surrounding the I 2 Fusarium oxysporum locus in tomato. Mol Gen Genet 231:179–185

    PubMed  CAS  Google Scholar 

  • Seithe A (1962) Die Haararten der Gattung Solanum L. und ihre taxonomische Verwertung. Bot Jahrb Syst 81:261–336

    Google Scholar 

  • Sela-Buurlage MB, Budai-Hadrian O, Pan Q, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R (2001) Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Mol Genet Genom 265:1104–1111

    Article  CAS  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Zhang L, Niño-Liu D, Ashrafi H, Foolad MR (2008) A Solanum lycopersicum × Solanum pimpinellifolium linkage map of tomato displaying genomic locations of R-genes, RGAs, and candidate resistance/defense-response ESTs. Int J Plant Genom. doi:10.1155/2008/926090

    Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708

    PubMed  CAS  Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121(4):731–739

    Article  PubMed  CAS  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068

    Article  PubMed  CAS  Google Scholar 

  • Sims WL (1980) History of tomato production for industry around the world. Acta Hortic 100:25–26

    Google Scholar 

  • Sinesio F, Cammareri M, Moneta E, Navez B, Peparaio M, Causse M, Grandillo S (2010) Sensory quality of fresh French and Dutch market tomatoes: a preference mapping study with Italian consumers. J Food Sci 75:S55–S67

    Article  PubMed  CAS  Google Scholar 

  • Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413–416

    Google Scholar 

  • Smith SD, Peralta IE (2002) Ecogeographic surveys as tools for analyzing potential reproductive isolating mechanisms: an example using Solanum juglandifolium Dunal, S. ochranthum Dunal, S. lycopersicoides Dunal, and S. sitiens I.M. Johnston. Taxon 51:341–349

    Article  Google Scholar 

  • Snyder JC, Guo Z, Thacker R, Goodman JP, Pyrek JS (1993) 2,3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider mites. J Chem Ecol 19:2981–2997

    Article  CAS  Google Scholar 

  • Soumpourou E, Iakovidis M, Chartrain L, Lyall V, Thomas CM (2007) The Solanum pimpinellifolium Cf-ECP1 and Cf-ECP4 genes for resistance to Cladosporium fulvum are located at the Milky Way locus on the short arm of chromosome 1. Theor Appl Genet 115:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688

    Article  CAS  Google Scholar 

  • Spooner DM, van den Berg RG, Rodríguez A, Bamberg J, Hijmans RJ, Lara Cabrera SI (2004) Wild potatoes (Solanum section Petota; Solanaceae) of North and Central America. Syst Bot Monogr 68:1–209

    Article  Google Scholar 

  • Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs to other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54:43–61

    Article  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  PubMed  CAS  Google Scholar 

  • Stack SM, Covey PA, Anderson LK, Bedinger PA (2009) Cytogenetic characterization of species hybrids in the tomato clade. Tomato Genet Coop Rep 59:57–61

    Google Scholar 

  • Städler T, Roselius K, Stephan W (2005) Genealogical footprints of speciation processes in wild tomatoes: demography and evidence for historical gene flow. Evolution 59:1268–1279

    PubMed  Google Scholar 

  • Stall RE, Walter JM (1965) Selection and inheritance of resistance in tomato to isolates of race 1 and 2 of the Fusarium wilt organism. Phytopathology 55:1213–1215

    Google Scholar 

  • Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537

    Article  CAS  Google Scholar 

  • Stamova L, Yordanov M (1990) Lv – as a symbol of the gene controlling resistance to Leveillula taurica. Tomato Genet Coop Rep 40:36

    Google Scholar 

  • Stevens MA (1972) Relationships between components contributing to quality variation among tomato lines. J Am Soc Hortic Sci 97:70–73

    Google Scholar 

  • Stevens MA (1986) Inheritance of tomato fruit quality components. In: Janick J (ed) Plant breeding reviews, vol 4. AVI, Westport, CT, USA, pp 273–312

    Google Scholar 

  • Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, UK, pp 35–109

    Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    Article  CAS  Google Scholar 

  • Stevens R, Buret M, Duffé F, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  PubMed  CAS  Google Scholar 

  • Stommel JR (2001) USDA 97L63, 97L66 and 97L97: tomato breeding lines with high fruit beta-carotene content. HortScience 36:387–388

    Google Scholar 

  • Stommel JR, Zhang Y (1998) Molecular markers linked to quantitative trait loci for anthracnose resistance in tomato. HortScience 33:514

    Google Scholar 

  • Stommel JR, Zhang Y (2001) Inheritance and QTL analysis of anthracnose resistance in the cultivated tomato (Lycopersicon esculentum). Acta Hortic 542:303–310

    Google Scholar 

  • Stommel JR, Abbott J, Saftner RA, Camp M (2005a) Sensory and objective quality attributes of beta-carotene- and lycopene-rich tomato fruit. J Am Soc Hortic Sci 130:244–251

    CAS  Google Scholar 

  • Stommel JR, Abbott JA, Saftner RA (2005b) USDA 02L1058 and 02L1059: Cherry tomato breeding lines with high fruit beta-carotene content. HortScience 40:1569–1570

    Google Scholar 

  • Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett 7(2A):583–597

    Google Scholar 

  • Symon DE (1981) The Solanaceous genera Browallia, Capsicum, Cestrum, Cyphomandra, Hyoscyamus, Lycopersicon, Nierembergia, Physalis, Petunia, Salpichroa, Withania, naturalized in Australia. J Adelaide Bot Gard 3:133–166

    Google Scholar 

  • Symon DE (1985) The Solanaceae of New Guinea. J Adelaide Bot Gard 8:1–177

    Google Scholar 

  • Szinay D (2010) The development of FISH tools for genetic, phylogenetic and breeding studies in tomato (Solanum lycopersicum). PhD Thesis, Wagenigen University, Wageningen, Netherlands

    Google Scholar 

  • Tadmor Y, Fridman E, Gur A, Larkov O, Lastochkin E, Ravid U, Zamir D, Lewinsohn E (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J Agric Food Chem 50(7):2005–2009

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Bernstzky R (1987) Molecular markers for the nuclear genome of tomato. In: Nevins DJ, Jones RA (eds) Plant biology, vol 4, Tomato biotechnology. Alan R. Liss, New York, NY, USA, pp 37–44

    Google Scholar 

  • Tanksley SD, Costello W (1991) The size of the L. pennellii chromosome 7 segment containing the I-3 gene in tomato breeding lines as measured by RFLP probing. Rep Tomato Genet Coop 41:60–61

    Google Scholar 

  • Tanksley SD, Hewitt JD (1988) Use of molecular markers in breeding for soluble solids in tomato – a re-examination. Theor Appl Genet 75:811–823

    Article  CAS  Google Scholar 

  • Tanksley SD, Loaiza-Figueroa F (1985) Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Genetics 82:5093–5096

    CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Rick CM (1980) Isozymic gene linkage map of the tomato: applications in genetics and breeding. Theor Appl Genet 57:161–170

    Article  CAS  Google Scholar 

  • Tanksley SD, Medina-Filho E, Rick CM (1982) Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49(1):11–25

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Riider MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Tanksley SD, Bernacchi D, Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D (1997a) Comparing the performance of a pair of processing lines nearly isogenic for the I2 gene conferring resistance to Fusarium oxysporum race 2. Rep Tomato Genet Coop 47:33–35

    Google Scholar 

  • Tanksley SD, Bernacchi D, Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D (1997b) Comparing the effects of linkage drag in a set of processing tomato lines nearly isogenic for the Mi gene for resistance to root knot nematodes. Rep Tomato Genet Coop 47:35–36

    Google Scholar 

  • Taylor IB (1986) Biosystematics of the tomato. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, UK, pp 1–34

    Google Scholar 

  • ten Have A, van Berloo R, Lindhout P, van Kan JAL (2007) Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. Eur J Plant Pathol 117:153–166

    Article  Google Scholar 

  • Termolino P, Fulton T, Perez O, Eannetta N, Xu Y, Tanksley SD, Grandillo S (2010) Advanced backcross QTL analysis of a Solanum lycopersicum × Solanum chilense cross. In: Proceedings of SOL2010 7th Solanaceae conference, Dundee, Scotland, 5–9 Sept 2010 (in press)

    Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint Kurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224

    Article  PubMed  CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Nigel G (1996a) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol Plant Microbe Interact 9(9):826–836

    Article  CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Priror P, Anaïs G, Mangin B, Bazin B, Nazer N, Nigel G (1996b) Polygenic resistence of tomato plants to bacterial wilt in the West Indies. Mol Plant Microbe Interact 9(9):837–842

    Article  CAS  Google Scholar 

  • Tieman D, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57(4):887–896

    Article  PubMed  CAS  Google Scholar 

  • Tomes ML, Quackenbush FW, McQuistan M (1954) Modification and dominance of the gene governing formation of high concentrations of beta-carotene in the tomato. Genetics 39:810–817

    PubMed  CAS  Google Scholar 

  • Tripodi P, Frusciante L, Tanksley SD, Grandillo S (2006) Updates on the development of a whole genome S. habrochaites (acc. LA1777) IL population. In: Proceedings of VI international Solanaceae conference on genomics meets biodiversity, Madison, WI, USA, 23–27 July 2006, p 403

    Google Scholar 

  • Tripodi P, Maurer S, Di Dato F, Al Seekh S, Frusciante L, Van Haaren MJJ, Mohammad A, Tanksley SD, Zamir D, Gebhardt C, Grandillo S (2009) Linking a set of tomato exotic libraries and a potato mapping population with a framework of conserved ortholog set II (COSII) markers. In: Proceedings of plant biology 2009, Honolulu, HI, USA, 18–22 July 2009, pp 194–195

    Google Scholar 

  • Tripodi P, Brog M, Di Dato F, Zamir D, Grandillo S (2010) QTL analysis in backcross inbred lines of Solanum neorickii (LA2133). In: Proceedings of SOL2010 7th Solanaceae conference, Dundee, Scotland, 5–9 Sept 2010 (in press)

    Google Scholar 

  • Truco MJ, Randall LB, Bloom AJ, St.Clair DA (2000) Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × L. hirsutum. Theor Appl Genet 101:1082–1092

    Article  CAS  Google Scholar 

  • Umaerus V, Umaerus M (1994) Inheritance of resistance to late blight. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CABI, Wallingford, UK, pp 365–401

    Google Scholar 

  • Vakalounakis DJ, Laterrot H, Moretti A, Ligoxigasis EK, Smardas K (1997) Linkage between Frl (Fusarium oxysporum f.sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann Appl Biol 130:319–323

    Article  Google Scholar 

  • Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet 66:241–247

    Article  Google Scholar 

  • Van der Beek JG, Verkerk R, Zabel P, Lindhout P (1992) Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84:106–112

    Article  Google Scholar 

  • Van der Beek JG, Pet G, Lindhout P (1994) Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6. Theor Appl Genet 89:467–473

    Article  Google Scholar 

  • Van der Biezen EA, Overduin B, Nijkamp HJJ, Hille J (1994) Integrated genetic map of tomato chromosome 3. Tomato Genet Coop Rep 44:8–10

    Google Scholar 

  • Van der Biezen EA, Glagotskaya T, Overduin B, Nijkamp HJJ, Hille J (1995) Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii. Mol Gen Genet 247:453–461

    Article  PubMed  Google Scholar 

  • Van der Hoeven RS, Monforte AJ, Breeden D, Tanksley SD, Steffens JC (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294

    Article  Google Scholar 

  • Van Der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • Van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358

    Article  Google Scholar 

  • Van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147

    PubMed  Google Scholar 

  • Van der Knaap E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247

    Article  Google Scholar 

  • Van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140

    Article  PubMed  CAS  Google Scholar 

  • Van Deynze A, van der Knaap E, Francis D (2006) Development and application of an informative set of anchored markers for tomato breeding. In: Plant animal genome XIV conference, San Diego, CA, USA, P 188

    Google Scholar 

  • Van Heusden AW, Koornneef M, Voorrips RE, Brüggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • Van Ooijen JW, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013

    Article  Google Scholar 

  • Van Tuinen A, Cordonnier-Pratt MM, Pratt LH, Verkerk R, Zabel P, Koornneef M (1997) The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet 94:115–122

    Article  PubMed  Google Scholar 

  • VanWordragen MF, Weide RL, Coppoolse E, Koornneef M, Zabel P (1996) Tomato chromosome 6: a high resolution map of the long arm and construction of a composite integrated marker-order map. Theor Appl Genet 92:1065–1072

    Article  CAS  Google Scholar 

  • Veremis JC, Roberts PA (1996a) Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor Appl Genet 93:950–959

    Article  Google Scholar 

  • Veremis JC, Roberts PA (1996b) Differentiation of Meloidogyne incognita and M. arenaria novel resistance phenotypes in Lycopersicon peruvianum and derived bridge lines. Theor Appl Genet 93:960–967

    Article  Google Scholar 

  • Veremis JC, Roberts PA (2000) Diversity of heat-stable genotype specific resistance to Meloidogyne in Marañon races of Lycopersicon peruvianum complex. Euphytica 111:9–16

    Article  Google Scholar 

  • Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280

    Article  CAS  Google Scholar 

  • Villalta I, Reina-Sánchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894

    Article  PubMed  CAS  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  PubMed  CAS  Google Scholar 

  • Villalta I, Reina-Sánchez A, Bolarín MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880

    Article  PubMed  CAS  Google Scholar 

  • Villand J, Skroch PW, Lai T, Hanson P, Kuo CG, Nienhuis J (1998) Genetic variation among tomato accessions from primary and secondary centers of diversity. Crop Sci 38:1339–1347

    Article  Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Walter JM (1967) Heredity resistance to disease in tomato. Annu Rev 5:131–160

    Google Scholar 

  • Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Warnock SJ (1988) A review of taxonomy and phylogeny of the genus Lycopersicon. Hortic Sci 23:669–673

    Google Scholar 

  • Wastie RL (1991) Breeding for resistance. In: Ingram DS, Williams PH (eds) Phytophthora infestans, the cause of late blight of potato. Advances in plant pathology, vol 7. Academic, London, UK, pp 193–224

    Google Scholar 

  • Weese T, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 33:445–463

    Article  Google Scholar 

  • Weide R, van Wordragen MF, Lankhorst RK, Verkerk R, Hanhart C, Liharska T, Pap E, Stam P, Zabel P, Koorneef M (1993) Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135:1175–1186

    PubMed  CAS  Google Scholar 

  • Weller JI, Soller M, Brody T (1988) Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118:329–339

    PubMed  CAS  Google Scholar 

  • Whalen MD (1979) Taxonomy of Solanum section Androceras. Gentes Herb 11:359–426

    Google Scholar 

  • Whalen MD (1984) Conspectus of species groups in Solanum subgenus Leptostemonum. Gentes Herb 12:179–282

    Google Scholar 

  • Wheeler D, Church D, Edgar R, Federhen S, Helmberg W, Madden T, Pontius J, Schuler G, Schriml L, Sequeira E, Suzek T, Tatusova T, Wagner L (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32:D35–D40

    Article  PubMed  CAS  Google Scholar 

  • Williams CE, St. Clair DA (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630

    Article  PubMed  CAS  Google Scholar 

  • Wing RA, Zhang HB, Tanksley SD (1994) Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. Mol Gen Genet 242:681–688

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, Van der Knaap E (2008) A retrotransposon- mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Martin B, Comstock JP, Vision TJ, Tauer CG, Zhao B, Pausch RC, Knapp S (2008) Fine mapping a QTL for carbon isotope composition in tomato. Theor Appl Genet 117:221–233

    Article  PubMed  CAS  Google Scholar 

  • Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464

    Article  CAS  Google Scholar 

  • Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of singly nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14(1):21–34

    Article  CAS  Google Scholar 

  • Yano K, Watanabe M, Yamamoto N, Tsugane T, Aoki K, Sakurai N, Shibata D (2006) MiBASE: a database of a miniature tomato cultivar Micro-Tom. Plant Biotechnol 23:195–198

    Article  CAS  Google Scholar 

  • Yates HE, Frary A, Doganlar S, Frampton A, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Yelle S, Hewitt JD, Robinson NL, Damon S, Bennett AB (1988) Sink metabolism in tomato fruit III. Analysis of carbohydrate assimilation in a wild species. Plant Physiol 87:737–740

    Article  PubMed  CAS  Google Scholar 

  • Yelle S, Chetelat RT, Dorais M, DeVerna JW, Bennett AB (1991) Sink metabolism in tomato fruit IV Genetic and biochemical analysis of sucrose accumulation. Plant Physiol 95:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni JJ (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079

    Article  CAS  Google Scholar 

  • Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120(2):579–585

    PubMed  CAS  Google Scholar 

  • Yu AT (1972) The genetics and physiology of water usage in Solanum pennellii Corr. and its hybrids with Lycopersicon esculentum Mill. PhD Dissertation, University of California, Davis, CA, USA

    Google Scholar 

  • Yu ZH, Wang JF, Stall RE, Vallejos CE (1995) Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 141(2):675–682

    PubMed  CAS  Google Scholar 

  • Yuan YN, Haanstra J, Lindhout P, Bonnema G (2002) The Cladopsorium fulvum resistance gene Cf-ECP3 is part of the Orion cluster on the short arm of chromosome 1. Mol Breed 10:45–50

    Article  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Eshed Y (1998a) Case history in germplasm introgression: tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson A (ed) Molecular dissection of complex traits. CRC, Boca Raton, FL, USA, pp 207–217

    Google Scholar 

  • Zamir D, Eshed Y (1998b) Tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, FL, USA, pp 207–217

    Google Scholar 

  • Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content in lycopersicon. Euphytica 36:187–191

    Article  CAS  Google Scholar 

  • Zamir D, Tanksley SD, Jones RA (1982) Haploid selection for low temperature tolerance of tomato pollen. Genetics 101:129–137

    PubMed  CAS  Google Scholar 

  • Zamir D, Ben-David T, Rudich J, Juvik J (1984) Frecuency distributions and linkage relationships of 2-tridecanone in interspecific segregrating generations in tomato. Euphytica 33(2):481–482

    Article  CAS  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay I, Navot N, Zaidan N, Sarfatti M, Eshed Y, Harel E, Pleban T, van Oss H, Kedar N, Rabinowitch HD, Czosneck H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

  • Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 100:368–375

    Article  CAS  Google Scholar 

  • Zhang Y, Stommel JR (2001) Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci 41:1602–1608

    Article  CAS  Google Scholar 

  • Zhang HB, Martin GB, Tanksley SD, Wing RA (1994) Map-based cloning in crop plants: tomato as a model system U Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Mol Gen Genet 244:613–621

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Budiman MA, Wing RA (2000) Genetic mapping of jointless-2 to tomato chromosome 12 using RFLP and RAPD markers. Theor Appl Genet 100:1183–1189

    Article  CAS  Google Scholar 

  • Zhang LP, Khan A, Niño-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang LP, Lin GY, Foolad MR (2003a) QTL comparison of salt tolerance during seed germination and vegetative growth in a Lycopersicon esculentum × L. pimpinellifolium RIL population. Acta Hortic 618:59–67

    CAS  Google Scholar 

  • Zhang LP, Lin GY, Niño-Liu D, Foolad MR (2003b) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

  • Zhang X, Thacker RR, Snyder JC (2008) Occurrence of 2,3-dihydrofarnesoic acid, a spidermite repellent, in trichome secretions of Lycopersicon esculentum × L. hirsutum hybrids. Euphytica 162:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the laboratories of S. Grandillo and S. Knapp is supported in part by the European Union (EU) program EU-SOL (contract PL 016214–2 EU-SOL). Research in the laboratories of S. Grandillo is also supported in part by the Italian MIUR project GenoPOM. Research in the laboratories of S. Knapp and D. M. Spooner is supported in part by the National Science Foundation’s (NSF) Planetary Biodiversity Inventory program (DEB-0316614 “PBI Solanum – a worldwide treatment”). This work was in part supported also by the Italian CNR Short-Term Mobility Program 2009 to S. Grandillo. Contribution nr. 363 from CNR-IGV, Institute of Plant Genetics, Portici.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Grandillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grandillo, S. et al. (2011). Solanum sect. Lycopersicon. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20450-0_9

Download citation

Publish with us

Policies and ethics