Skip to main content
Log in

Both additivity and epistasis control the genetic variation for fruit quality traits in tomato

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The effect of a gene involved in the variation of a quantitative trait may change due to epistatic interactions with the overall genetic background or with other genes through digenic interactions. The classical populations used to map quantitative trait loci (QTL) are poorly efficient to detect epistasis. To assess the importance of epistasis in the genetic control of fruit quality traits, we compared 13 tomato lines having the same genetic background except for one to five chromosome fragments introgressed from a distant line. Six traits were assessed: fruit soluble solid content, sugar content and titratable acidity, fruit weight, locule number and fruit firmness. Except for firmness, a large part of the variation of the six traits was under additive control, but interactions between QTL leading to epistasis effects were common. In the lines cumulating several QTL regions, all the significant epistatic interactions had a sign opposite to the additive effects, suggesting less than additive epistasis. Finally the re-examination of the segregating population initially used to map the QTL confirmed the extent of epistasis, which frequently involved a region where main effect QTL have been detected in this progeny or in other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquiere A (2001) Genetic basis and mapping of the resistance to Rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103:1084–1092

    Article  CAS  Google Scholar 

  • Anholt RRH, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I, Rollmann SM, Kamdar KP, Mackay TFC (2003) The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nature Genet 35:180–184

    Article  PubMed  CAS  Google Scholar 

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backross QTL analysis in tomato. I. Identification of QTL for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci USA 101:15670–15675

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Drouet D, Denance C, Van De Weg WE, Brisset M-N, Paulin JL, Durel CE (2005) Identification of a major QTL together with several minor additive or epistatic QTL for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  PubMed  CAS  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–624

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTL involved in tomato fruit size and composition. J Exp Bot 55:1671–85

    Article  PubMed  CAS  Google Scholar 

  • Charcosset A, Causse M, Moreau M, Gallais A (1995) Investigation into the effect of genetic background on QTL expression using three connected maize recombinant inbred lines (RIL) populations. In: van Ooijen JW (ed) Biometrics in plant breeding: applications of molecular markers, pp 83–89

  • Cheverud JM, Routman EJ (1996) Epistasis as a source of increased additive genetic variance at population bottlenecks. Evolution 50:1042–1051

    Article  Google Scholar 

  • Clark AG, Wang L (1997) Epistasis in measured genotypes: Drosophila P-element insertions. Genetics 147:157–163

    PubMed  CAS  Google Scholar 

  • Clarke JD, Aarts N, Feys BJ, Dong XN, Parker JE (2001) Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5. Plant J 26:409–420

    Article  PubMed  CAS  Google Scholar 

  • Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC, Zeng ZB (1996) Design III with marker loci. Genetics 143:1437–1456

    PubMed  CAS  Google Scholar 

  • Cordell HJ, Todd JA, Hill NJ, Lord CJ, Lyons PA, Peterson LB, Wicker LS, Clayton DG (2001) Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. Genetics 158:357–367

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte Branched 1 and the origin of maize—evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Elena SF, Lenski RE (2001) Epistasis between new mutations and genetic background and a test of genetic canalization. Evolution 55:1746–1752

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Fenster C, GallowayLF, Chao L (1997) Epistasis and its consequences for the evolution of natural populations. Trends Ecol Evol 12:282–286

    Article  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Google Scholar 

  • Fulton TM, BeckBunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Ann Rev Plant Phys Plant Mol Biol 52:725–749

    Article  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Hua JP, Xing YZ, Wei WR Xu C, Sun X, Yu S, Zhang Q (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574-2579

    Article  PubMed  CAS  Google Scholar 

  • Jannink JL, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed  CAS  Google Scholar 

  • Johnson WC, Gepts P (2002) The Role of epistasis in controlling seed yield and other agronomic traits in an Andean x Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica 125:69–79

    Article  CAS  Google Scholar 

  • Kabelka E, Yang WC, Francis DM (2004) Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. J Amer Soc Hort Sci 129:250–257

    CAS  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Kearsey M.J, Pooni HS Syed NH (2003) Genetics of quantitative traits in Arabidopsis thaliana. Heredity 91:456–464

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD (1996) Metabolic models of selection response. J Theor Biol 182:311–316

    Article  PubMed  CAS  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2005) Epistasis underlying female sterility detected in hybrid breakdown in a Japonica-Indica cross of rice (Oryza sativa L.). Theor Appl Genet 110:346–355

    Article  PubMed  CAS  Google Scholar 

  • Lark KG, Chase K, Adler F, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660

    Article  PubMed  CAS  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic background. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Levin I, Lalazar A, Bar M, Schaffer AA (2004) Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit. Ind Crops Prod 20:29–36

    Article  CAS  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L-esculentum var. giant heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Liu PY, Zhu J, Lou XY, Lu Y (2003) A method for marker-assisted selection based on QTLs with epistatic effects. Genetica 119:75–86

    Article  PubMed  CAS  Google Scholar 

  • Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet 107:283–290

    Article  PubMed  CAS  Google Scholar 

  • McMullen MD, Snook M, Lee EA, Byrne PF, Kross H, Musket TA, Houchins K, Coe EH (2001) The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyanthocyanin synthesis in maize (Zea mays L.) Genome 44:667–676

    Article  PubMed  CAS  Google Scholar 

  • Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 107:89–101

    PubMed  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen MS, Cheng ZK, Li CY, Ling HQ, Xue YB, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata D, Tabata S, Granell A, Botella MA, Giullano G, Frusciante L, Causse M, Zamir D (2005) The tomato sequencing project, the first cornerstone of the International Solanaceae Project (SOL). Compar. Funct. Genomics 6:153–158

    Article  CAS  Google Scholar 

  • Phillips PC (1998) The language of gene interaction. Genetics 149:1167–1171

    PubMed  CAS  Google Scholar 

  • Purcell S, Sham PC (2004) Epistasis in quantitative trait locus linkage analysis: interaction or main effect? Behav Genet 34:143–152

    Article  PubMed  Google Scholar 

  • Quilot B, Génard M, Kervella J, Lescourret F (2004) Analysis of genotypic variations in flesh total sugar content via a modelling approach applied to peach fruit. Theor Appl Genet 109:440–449

    PubMed  CAS  Google Scholar 

  • Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, St Clair DA (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    Article  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • SAS Institute (1988) SAS users guide: statistics (SAS Institute, ed). Cary, North Carolina

  • Segre D, DeLuna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37:77–83

    PubMed  CAS  Google Scholar 

  • Seymour G, Manning K, Eriksson EM, Popovich AH, King GJ (2002) Genetic identification and genomic organization of factors affecting fruit texture. J Exp Bot 53:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Chen ZJ (2005) Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity 94:295–304

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Thabuis A, Palloix A, Servin B, Daubèze AM, Signoret P, Hospital F, Lefebvre V (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9–20

    Article  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TFC, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1151

    PubMed  CAS  Google Scholar 

  • van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breed 8:187–195

    Article  Google Scholar 

  • van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147

    PubMed  Google Scholar 

  • van der Knaap E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247

    Article  Google Scholar 

  • Visker MHPW, Keizer LCP, Van Eck HJ, Jacobsen E, Colon LT, Struik PC (2003) Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet 106:317–325

    PubMed  CAS  Google Scholar 

  • Wade MJ, Winther RG, Agrawal AF, Goodnight CJ (2001) Alternative definitions of epistasis: dependence and interaction. Trends Ecol Evol 16:498–504

    Article  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42:96–104

    Article  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Zhao JW, Meng JL (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106(4):759–764

    PubMed  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2005) Oil content in a European x Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to anonymous reviewers for their helpful comments. Many thanks to A. Gautier for genotypic and phenotypic works, to the greenhouse experimental team for plant cultivation, to A. M. Cossalter for taking care of the plants and for her help during the phenotypic evaluations, to P. Duffé for plant genotyping, to R. Matthieu for chemical evaluations and to C. Dillmann for SAS programs. Thanks to Vilmorin for providing lines and the trial in Ledenon. Laurent Lecomte was partly supported by the Conseil Régional Provence-Alpes-Côte d’Azur (France). The experiments comply with the current French laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Causse.

Additional information

Communicated by Q. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Causse, M., Chaïb, J., Lecomte, L. et al. Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115, 429–442 (2007). https://doi.org/10.1007/s00122-007-0578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0578-1

Keywords

Navigation