Skip to main content
Log in

Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The amount of recombination in three different intraspecific crosses of the wild tomato species Lycopersicon peruvianum was investigated for the short arm of chromosome 6 that harbors the Mi nematode resistance gene and the centromeric region of chromosome 9 that contains the Tm2a virus resistance gene. These two genes have been introgressed into the cultivated tomato and are associated with a significant reduction in recombination in the respective region when crossed to other L. esculentum lines. For both regions and all crosses within L. peruvianum significantly more recombination (up to more than ten fold) was observed in the gametes derived from the female parent than in those from the male parent. In general, the differences were more pronounced for chromosome 6 than for chromosome 9. The amount of recombination in the three intraspecific L. peruvianum crosses was compared with the amount of recombination observed in the standard interspecific cross used for the construction of a saturated genetic map of tomato (L. esculentum x L. pennellii). In two of three cases for each region, more recombination was observed in the intraspecific crosses and in one case for each region significantly less recombination was found in the intraspecific cross when compared to the interspecific cross. Specifically for the Mi-carrying region, crosses within L. peruvianum exhibited up to 15-fold more recombination than crosses between resistant and susceptible L. esculentum lines, and such crosses will allow the fine mapping of this gene for the purpose of map-based cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts JMMJG, Hontelez JGJ, Fischer P, Verkerk R, van Kammen A, Zabel P (1991) Acid phosphatase-1 1, a tightly linked marker for root-knot nematode resistance in tomato: from protein to gene, using PCR and degenerate primers containing deoxyinosine. Plant Mol Biol 16:647–661

    Google Scholar 

  • Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976) The genetic control of meiosis. Annu Rev Genet 10:109–122

    Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    Google Scholar 

  • Burt A, Bell G, Harvey PH (1991) Sex differences in recombination. J Evol Biol 4:259–277

    Google Scholar 

  • Busso CS, Liu CJ, Hash CT, Witcombe JR, Devos KM, de Wet JMJ, Gale MD (1995) Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers. Theor Appl Genet 90:242–246

    Google Scholar 

  • de Vicente MC, Tanklsey SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178

    Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bowden DW, Smith DR, Lander ES, Botstein D, Akots G, Rediker KS, Gravius T, Brown VA, Rising MB, Parker C, Power JA, Watt DE, Kauffman ER, Bricker A, Phipps P, Muller-Kahle H, Fulton TR, Ng S, Schumm JW, Braman JC, Knowlton RG, Baker DF, Crooks SM, Lincoln SE, Daly MJ, Abrahamson J (1987) A genetic linkage map of the human genome. Cell 51:319–337

    Google Scholar 

  • Gadish I, Zamir D (1986) Differential zygotic abortion in an interspecific Lycopersicon cross. Genome 29:156–159

    Google Scholar 

  • Ganal MW, Young ND, Tanksley SD (1989) Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol Gen Genet 215:395–400

    Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschnabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homeologous tomato genome. Theor Appl Genet 83:49–57

    Google Scholar 

  • Ho J-Y, Weide R, Ma HM, van Wondragen MF, Lanbert KN, Koorneef M, Zabel P, Williamson VM (1992) The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J 2:971–982

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    Google Scholar 

  • Messeguer R, Ganal MW, de Vicente MC, Young ND, Bolkan H, Tanksley SD (1991) High resolution RFLP map around the root-knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Google Scholar 

  • Paterson AH, de Verna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecific cross of tomato. Genetics 124:735–742

    Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    Google Scholar 

  • Reeves RH (1990) Sex, strain, and species differences affect recombination across an evolutionary conserved segment of mouse chromosome 16. Genomics 8:141–148

    Google Scholar 

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753–768

    Google Scholar 

  • Rick CM (1972) Further studies on segregation and recombination in backcross derivatives of a tomato species hybrid. Biol Zentralbl 91:209–220

    Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654

    Google Scholar 

  • Stadler LJ (1926) The variability of crossing-over in maize. Genetics 11:1–37

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vincente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandilo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68

    Google Scholar 

  • van Ooijen JW, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013

    Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganal, M.W., Tanksley, S.D. Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum . Theoret. Appl. Genetics 92, 101–108 (1996). https://doi.org/10.1007/BF00222958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222958

Key words

Navigation