Skip to main content
Log in

Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A population of recombinant inbred lines (RILs) has several advantages over its F2 population counterpart with respect to quantitative trait loci (QTLs) and genomic studies. The objective of the investigation reported here was the comparative characterization by simple sequence repeat (SSR) and sequence characterized amplified region (SCAR) markers of two populations of F6 lines derived from Lycopersicon pimpinellifolium (P population, consisting of 142 lines) and L. cheesmanii (C population, consisting of 115 lines) and sharing the female parent, L. esculentum var. cerasiforme. Almost the same percentage of polymorphic markers was found for each population although a different set of markers was involved. The proportion of SSR primer pairs (93 in total) that resulted in polymorphism for the main band was larger (55–56%) than for SCAR ones (13–16%). The C population showed the largest proportion of markers with zygotic and gametic segregation distortion, which is in agreement with the larger genetic distance reported between L. esculentum and L. cheesmanii than with the former and L. pimpinellifolium. Zygotic distortion corresponded primarily to an excess of heterozygotes in both populations, suggesting that the increment of homozygosity was the main factor limiting viability/self-fertility of the lines. Despite both populations sharing the female parent, P alleles were slightly favored in the P population while E alleles were the most frequently fixed in the C population. A linkage map for each population was obtained, with the average distances between consecutive markers being 3.8 cM or 3.4 cM depending on the population. Discrepancy between the maps for the location of only four markers on chromosomes 3, 6 and 10 was observed. Two possible causes of this discrepancy were investigated and can not be discarded: (1) the presence of duplicated markers and (2) segregation distortion caused by the selective advantage of gametes carrying one of the two alleles. This marker characterization of both populations will continue and will enable the comparative QTLs and candidate gene analysis of complex traits towards a more efficient utilization of genetic resources and breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allard RW (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Hered 79:225–238

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer, AA, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AE, Van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292

    Article  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

    Article  PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal M (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum×L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    PubMed  CAS  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cook R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    PubMed  CAS  Google Scholar 

  • Bredemeijer GMM, Arens P, Wouters D, Visse D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590

    Article  CAS  Google Scholar 

  • Bretó MP, Asins MJ, Carbonell EA (1993) Genetic variability in Lycopersicon species and their genetic relationships. Theor Appl Genet 86:113–120

    Article  PubMed  Google Scholar 

  • Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Theor Appl Genet 250:39–49

    CAS  Google Scholar 

  • Brown AHD (1978) Isozymes, plant population genetic structure and genetic conservation. Theor Appl Genet 52:145–157

    Article  Google Scholar 

  • Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    CAS  Google Scholar 

  • deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an inter specific tomato cross. Genetics 134:585–596

    PubMed  CAS  Google Scholar 

  • Dooner HK, Martinez-Ferez IM (1997) Germinal excisions of the maize transposon activator do not stimulate meiotic recombination or homology-dependent repair at the bz locus. Genetics 147:1923–1932

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Francis Ar, Shetty TK, Bhattacharya RK (1989) Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of plant flavonoids. Mutant Res 222:393–401

    Article  CAS  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum×L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Frisch M, Quint M, Melchinger AE (2004) Duplicate marker loci can result in incorrect locus orders on linkage maps. Theor Appl Genet 108:485–496

    Article  Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997) Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum×L. parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Ganal MW, Czihal R, Hannappel U, KloosD-U, Polley A, Ling H-Q (1998) Sequencing of cDNA clones from the genetic map of tomato (Lycopersicum esculentum). Genome Res 8:842–847

    PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  PubMed  CAS  Google Scholar 

  • Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley SD, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum×L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373

    PubMed  CAS  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Krinsky NI (1992) Anticarcinogenic activities of caretenoids in animals and cellular systems. In: Emers I, Chance B (eds) Free radicals and aging. Birkhäuser, Basel, pp 227–234

    Chapter  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small fruited wild species Lycopersicon pimpinellifolium and L.esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Lukens LN, Doebley J (1999) Epistatic and environmental interactions for QTL involved in maize evolution. Genet Res 74:291–302

    Article  CAS  Google Scholar 

  • Mather K (1957) The measurement of linkage in heredity. Methuen, London

    Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    PubMed  CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997a) Salt tolerance in Lycopersicon species V. Does genetic variability at quantitative trait loci affect their analysis?. Theor Appl Genet 95:284–293

    Article  CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997b) Salt tolerance in Lycopersicon species. VI. Genotype by salinity interaction in quantitative trait loci detection. Constitutive and response QTLs. Theor Appl Genet 95:706–713

    Article  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1999) Salt tolerance in Lycopersicon species. VII. Pleiotropic action of genes controlling earlyness. Theor Appl Genet 98:593–601

    Article  Google Scholar 

  • Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electroforetically detectable alleles in a finite population. Genet Res 22:201–204

    Article  Google Scholar 

  • Paran I, Goldman IL, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Deverna JW, Lanini B (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecific cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Pérez de la Vega M, Sáenz-de-Miera LE, Allard RW (1994) Ecogeographical distribution and differential adaptedness of multilocus allelic associations in Spanish Avena sativa L. Theor Appl Genet 88:56–64

    Google Scholar 

  • Rick CM, Fobes JF (1975) Allozymes of Galápagos tomatoes: polymorphism, geographic distribution, and affinities. Evolution 29:443–457

    Article  Google Scholar 

  • Rogers HJ, Maund SL, Johnson LH (2001) A beta-galactosidase like gene is expressed during tobacco pollen development. J Exp Bot 52:67–75

    Article  PubMed  CAS  Google Scholar 

  • Ruíz C, Bretó MP, Asins MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94

    Article  Google Scholar 

  • Simpson SP (1989) Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet 77:815–819

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage map of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) joinmap version 3.0, Software for the calculation of genetic linkage maps. Release 3.0. Plant Research International, Wageningen

    Google Scholar 

  • Verma AK, Johnson JA, Gould MN, Tanner MA (1988) Inhibition of 7,12-dimethylbenz(a)anthracene and N-nitrosomethylurea induced rat mammary cancer by dietary flavonol quercitin. Cancer Res 48:5754–5788

    PubMed  CAS  Google Scholar 

  • Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Zhang LP, Khan A, Nino-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum×Lycopersicon hirsutum cross. Genome 45:133–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from IVIA (IV), CSIC (ARS) and INIA (RTA01-113-C2). The authors thank Drs. G.P. Bernet and J. Puchades for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Asins.

Additional information

Communicated by I. Paran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalta, I., Reina-Sánchez, A., Cuartero, J. et al. Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii . Theor Appl Genet 110, 881–894 (2005). https://doi.org/10.1007/s00122-004-1906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1906-3

Keywords

Navigation