Skip to main content
Log in

QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum × S. arcanum cross

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Alternaria solani (Ellis and Martin) Sorauer, the causal agent of early blight (EB) disease, infects aerial parts of tomato at both seedling and adult plant stages. Resistant cultivars would facilitate a sustainable EB management. EB resistance is a quantitatively expressed character, a fact that has hampered effective breeding. In order to identify and estimate the effect of genes conditioning resistance to EB, a quantitative trait loci (QTL) mapping study was performed in F2 and F3 populations derived from the cross between the susceptible Solanum lycopersicum (syn. Lycopersicon esculentum) cv. ‘Solentos’ and the resistant Solanum arcanum (syn. Lycopersicon peruvianum) LA2157 and genotyped with AFLP, microsatellite and SNP markers. Two evaluation criteria of resistance were used: measurements of EB lesion growth on the F2 plants in glasshouse tests and visual ratings of EB severity on foliage of the F3 lines in a field test. A total of six QTL regions were mapped on chromosomes 1, 2, 5–7, and 9 with LOD scores ranging from 3.4 to 17.5. Three EB QTL also confer resistance to stem lesions in the field, which has not been reported before. All QTL displayed significant additive gene action; in some cases a dominance effect was found. Additive × additive epistatic interactions were detected between one pair of QTL. For two QTL, the susceptible parent contributed resistance alleles to both EB and stem lesion resistance. Three of the QTL showed an effect in all tests despite methodological and environmental differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

    Article  PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphisms and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  PubMed  CAS  Google Scholar 

  • Barksdale TH, Stoner AK (1973) Segregation for horizontal resistance to tomato early blight. Plant Dis Rep 57:964–965

    Google Scholar 

  • Barksdale TH, Stoner AK (1977) A study of the inheritance of tomato early blight resistance. Plant Dis Rep 61:63–65

    Google Scholar 

  • Bos G, Kartapradja R (1977) Tomato variety trials on Java with emphasis on yield potential, adaptability to environment and tolerance to pests and diseases. Bull Penelitian Hortikultura 5:93–113

    Google Scholar 

  • Bredemeijer GMM, Arens P, Wouters D, Visser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590

    Article  CAS  Google Scholar 

  • Brüggemann W, Linger P, Wenner A, Koornneef M (1996) Improvement of post-chilling photosynthesis in tomato by sexual hybridization with a Lycopersicon peruvianum line from elevated altitude. Adv Hort Sci 10:215–218

    Google Scholar 

  • Chaerani R, Groenwold R, Stam P, Voorrips RE (2006) Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. J Gen Plant Pathol (in press)

  • Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    Article  CAS  Google Scholar 

  • Christ BJ (1991) Effect of disease assessment method on ranking potato cultivars for resistance to early blight. Plant Dis 75:353–356

    Article  Google Scholar 

  • De Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Dirlewanger E, Isaac PG, Ranades S, Belajouza M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  Google Scholar 

  • Foolad MR, Zhang LP, Khan AA, Niño-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × Lycopersion hirsutum cross. Theor Appl Genet 104:945–958

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    CAS  Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997) Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  Google Scholar 

  • Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTL are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor Appl Genet 93:503–511

    CAS  Google Scholar 

  • Lübberstedt T, Xia XC, Tan G, Liu X, Melchinger AE (1999) QTL mapping of resistance to Sporisorium reiliana in maize. Theor Appl Genet 99:593–598

    Article  Google Scholar 

  • Maiero M, Ng TJ, Barksdale TH (1990) Genetic resistance to early blight in tomato breeding lines. HortScience 25:344–346

    Google Scholar 

  • Manohara D (1971) Penyakit-penyakit pada tanaman famili Solanaceae di Lembang dan Pacet. Fakultas Pertanian Institut Pertanian Bogor, Bogor, p.33

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nash AF, Gardner RG (1988) Heritability of tomato early blight resistance derived from Lycopersicon hirsutum PI 126445. J Am Soc Hort Sci 113:264–268

    Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Welham SJ, Kane AF, Gilmour AR, Thompson R, Webster R, Wilson GT (2002) GenStat® for WindowsTM, 6th edn. VSN International, Oxford

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. Et de Not., in winter rapeseed (Brassica napus L). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Poysa V, Tu JC (1996) Response of cultivars and breeding lines of Lycopersicon spp. to Alternaria solani. Can Plant Dis Surv 76:5–8

    Google Scholar 

  • Rotem J (1994) The genus Alternaria biology, epidemiology, and pathogenicity, 1st edn. The American Phtyopathological Society, St. Paul, MN, pp 48, 203

  • Sandbrink JM, Colon LT, Wolters PJCC, Stiekema WJ (2000) Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Mol Breed 6:215–225

    Article  CAS  Google Scholar 

  • Sandbrink JM, Van Ooijen JW, Purimahua C, Vrielink R, Verkerk M, Zabel P, Lindhout P (1995) Localization of genes for bacterial canker resistance in Lycopersicon esculentum using RFLPs. Theor Appl Genet 90:444–450

    Article  CAS  Google Scholar 

  • Sherf AF, MacNab AA (1986) Vegetable diseases and their control. Wiley, New York, pp634–640

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Stancheva I (1991) Inheritance of the resistance to injuries on the growth mass caused by Alternaria solani in the tomato. Genetika-i-Selektsiya 24:232–236

    Google Scholar 

  • Stancheva I, Lozanov I, Achkova Z (1991a) Sources of resistance to Alternaria solani in the tomato in wild growing species of the genus Lycopersicon. Genetika-i-Selektsiya 24:126–130

    Google Scholar 

  • Stancheva I, Lozanov I, Stamova L (1991b) Correlations between the resistance to different injuries from Alternaria solani in the tomatoes. Genetika-i-Selektsiya 24:51–55

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messegeur R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genome. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Thirthamalappa, Lohithaswa HC (2000) Genetics of resistance to early blight (Alternaria solani Sorauer) in tomato (Lycopersicum esculentum L.) Euphytica 113:187–193

  • Van Heusden AW, Koornneef M, Voorrips RE, Bruggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 4.0, Software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, The Netherlands

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Danesh D, Menancio-Hautea, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87:243–249

    Article  CAS  Google Scholar 

  • Zhang LP, Lin GY, Niño-Liu, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gerda Uenk, Hanneke van der Schoot and Wendy van ‘t Westende for help and advice in the marker analyses; Paul Arens for developing SSR primers; Dirk Budding and Remmelt Groenwold for assistance with in vitro plant culture; Daan Jaspers and Geurt Versteeg for plant care in the glasshouse. Nurul Hidayati, Vita Anggraini and Sularno of East-West Seed Indonesia are gratefully acknowledged for conducting the field trial, and the companies Enza Zaden, Syngenta Seeds and Nunhems Zaden for co-funding part of the SNP development and for permission to publish. R.C. was supported by the Royal Netherlands Academy of Arts and Sciences in the framework of the Scientific Programme Indonesia—The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Voorrips.

Additional information

Communicated by T. Lübberstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaerani, R., Smulders, M.J.M., van der Linden, C.G. et al. QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum × S. arcanum cross. Theor Appl Genet 114, 439–450 (2007). https://doi.org/10.1007/s00122-006-0442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0442-8

Keywords

Navigation