Skip to main content
Log in

Somatic Embryogenesis and Synthetic Seed Production—a Biotechnological Approach for True-to-Type Propagation and In Vitro Conservation of an Ornamental Bulbaceous Plant Drimiopsis kirkii Baker.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient plant regeneration protocol through indirect somatic embryogenesis pathway via callus had been developed from the leaf explant of an ornamental bulbaceous plant Drimiopsis kirkii. Optimum friable calli were induced on Murashige and Skoog (MS) basal medium supplemented with 3.0 mg/l of 2,4-dichlorophenoxyacetic acid and 1.0 mg/l of α-naphthalene acetic acid (NAA). On subculturing the callus on MS medium supplemented with 2.5 mg/l of thidiazuron (TDZ), 73.3 % of the cultures responded with 20.4 ± 0.3 somatic embryos (SEs) per 500 mg callus at different stages of development after 6 weeks of culture. The highest response of 86.7 % with 28.3 ± 0.5 embryos per 500 mg callus was observed on MS medium supplemented with 2.5 mg/l TDZ and 1.0 mg/l NAA. SEs were encapsulated in calcium alginate beads for the production of synthetic seeds (SSs) and their storability was investigated. The highest SS germination (93.3 %) was observed in 1.0 % sodium alginate followed by 86.7 % germination with 2.5 % sodium alginate. The SSs were stored at three different temperatures (4, 15, and 24 ºC) up to 6 months. The SSs kept at 15 °C showed 64.4 % germinability even after 4 months of storage. Both nonencapsulated and encapsulated SE-derived plants were successfully transferred to soil with 93.3 and 88.3 % survival rate accordingly. Randomly amplified polymorphic DNA (RAPD) analysis revealed that there were no somaclonal variations among the plants produced via somatic embryogenesis and they are true-to-type to their parental plant. These results confirmed the most reliable methods, which can be further used for genetic transformation studies as well as for mass propagation of ornamental D. kirkii at a commercial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

EM:

Encapsulation medium

KIN:

Kinetin

MS:

Murashige and Skoog

NAA:

α-Naphthalene acetic acid

PGRs:

Plant growth regulators

RAPD:

Randomly amplified polymorphic DNA

SEs:

Somatic embryos

SSs:

Synthetic seeds

TDZ:

Thidiazuron

References

  1. Ara, H., Jaiswal, U., & Jaiswal, V. S. (2000). Current Science, 78, 1438–1444.

    Google Scholar 

  2. Utomo, H. S., Wenefrida, I., Meche, M. M., & Nash, J. L. (2008). Plant Cell Tissue and Organ Culture, 92, 281–291.

    Article  CAS  Google Scholar 

  3. Faisal, M., Alatar, A. A., & Hegazy, A. K. (2013). Applied Biochemistry and Biotechnology, 169, 408–417.

    Article  CAS  Google Scholar 

  4. West, T. P., Ravindra, M. B., & Preece, J. E. (2006). Plant Cell Tissue and Organ Culture, 87, 223–231.

    Article  Google Scholar 

  5. Sarmah, D. K., Borthakur, M., & Borua, P. K. (2010). Current Science, 98, 686–690.

    CAS  Google Scholar 

  6. Mohanty, P., & Das, J. (2013). Plant Growth Regulation, 70, 297–303.

    Article  CAS  Google Scholar 

  7. Ghosh, B., & Sen, S. (1994). Plant Cell Report, 13, 381–385.

    Article  CAS  Google Scholar 

  8. Ozudogru, E. A., Previati, A., & Lambardi, M. (2010). Methods in Molecular Biology. In S. M. Jain & S. J. Ochatt (Eds.), Protocols for in vitro propagation of ornamental plants (Vol. 589, pp. 303–324). Totowa: Humana.

    Chapter  Google Scholar 

  9. Ozden-Tokatli, Y., Carlo, A. D., Gumusel, F., Pigmattelli, S., & Lambardi, M. (2008). Propagation of Ornamental Plants, 8, 17–22.

    Google Scholar 

  10. Kumar, A., Prakash, K., Sinha, R. K., & Kumar, N. (2013). Applied Biochemistry and Biotechnology, 169, 894–900.

    Article  CAS  Google Scholar 

  11. Goswami, K., Sharma, R., Singh, P. K., & Singh, G. (2013). Physiology and Molecular Biology of Plants, 19, 137–145.

    Article  CAS  Google Scholar 

  12. Bairu, M. W., Aremu, A. O., & van Staden, J. (2011). Plant Growth Regulation, 63, 147–173.

    Article  CAS  Google Scholar 

  13. Weising, K., Nybom, H., Wolff, K., & Kahl, G. (2005). DNA fingerprinting in plants: principles, methods, and applications (2nd ed.). New York: CRC Press.

    Book  Google Scholar 

  14. Haque, S. M., & Ghosh, B. (2013). National Academy Science Letters, 36, 551–562.

    Article  CAS  Google Scholar 

  15. Faisal, M., Alatar, A. A., Ahmad, N., Anis, M., & Hegazy, A. K. (2012). Applied Biochemistry and Biotechnology, 168, 1739–1752.

    Article  CAS  Google Scholar 

  16. Cheruvathur, M. K., Abraham, J., & Thomas, T. D. (2013). Applied Biochemistry and Biotechnology, 169, 1799–1810.

    Article  CAS  Google Scholar 

  17. Ahmad, N., Javed, S. B., Khan, M. I., & Anis, M. (2013). Acta Physiologiae Plantarum, 35, 2493–2500.

    Article  CAS  Google Scholar 

  18. Xu, P., Zhang, Z., Wang, B., Xia, X., & Jia, J. (2012). Plant Cell Tissue and Organ Culture, 111, 393–397.

    Article  Google Scholar 

  19. Pourhosseini, L., Kermani, M. J., Habashi, A. A., & Khalighi, A. (2013). Plant Cell Tissue and Organ Culture, 12, 101–108.

    Article  Google Scholar 

  20. Naing, A. H., Kim, C. K., Yun, B. J., Jin, J. Y., & Lim, B. K. (2013). Plant Cell Tissue and Organ Culture, 112, 361–368.

    Article  Google Scholar 

  21. Lan, T. H., Hong, P. I., Huang, C. C., Chang, W. C., & Lin, C. S. (2009). In Vitro Cellular & Developmental Biology—Plant, 45, 44–47.

    Article  Google Scholar 

  22. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  23. Murray, M. G., & Thompson, W. F. (1980). Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  Google Scholar 

  24. Cota-Sánchez, J. H., Remarchuk, K., & Ubayasena, K. (2006). Plant Molecular Biology Reporter, 24, 161–167.

    Article  Google Scholar 

  25. Kou, Y., Ma, G., Teixeira da Silva, J. A., & Liu, N. (2013). Plant Cell Tissue and Organ. Culture, 112, 1–7.

    CAS  Google Scholar 

  26. Murthy, B. N. S., Murch, S. J., & Saxena, P. K. (1998). In Vitro Cellular & Developmental Biology—Plant, 34, 267–275.

    Article  CAS  Google Scholar 

  27. Guo, B., Abbasi, B. H., Zeb, A., Xu, L. L., & Wei, Y. H. (2011). African Journal of Biotechnology, 10, 8984–9000.

    CAS  Google Scholar 

  28. Raghu, A. V., Unnikrishnan, K., Geetha, S. P., Martin, G., & Balachandran, I. (2011). In Vitro Cellular & Developmental Biology—Plant, 47, 506–515.

    Article  CAS  Google Scholar 

  29. Baskaran, P., & Van Staden, J. (2012). Plant Cell Tissue and Organ Culture, 109, 517–524.

    Article  CAS  Google Scholar 

  30. Bakhshaie, M., Babalar, M., Mirmasoumi, M., & Khalighi, A. (2010). Plant Cell Tissue and Organ Culture, 102, 229–235.

    Article  CAS  Google Scholar 

  31. Kumar, G. K., & Thomas, T. D. (2012). Plant Cell Tissue and Organ Culture, 110, 141–151.

    Article  Google Scholar 

  32. Cheruvathur, M. K., Najeeb, N., & Thomas, T. D. (2013). Acta Physiologiae Plantarum, 35, 771–779.

    Article  CAS  Google Scholar 

  33. Rai, M. K., Jaiswal, V. S., & Jaiswal, U. (2008). Scientia Horticulturae, 118, 33–38.

    Article  CAS  Google Scholar 

  34. Ahmad, N., & Anis, M. (2010). Biologia Plantarum, 54, 748–752.

    Article  Google Scholar 

  35. Lata, H., Chandra, S., Mehmedic, Z., Khan, I., & ElSohly, M. A. (2012). Acta Physiologiae Plantarum, 34, 743–750.

    Article  CAS  Google Scholar 

  36. Negi, D., & Saxena, S. (2011). Plant Biotechnology Reports, 5, 35–43.

    Article  Google Scholar 

  37. Parida, R., Mohantya, S., & Nayak, S. (2013). Plant Biosystem, 147, 905–912.

    Article  Google Scholar 

  38. Haque, S. M., & Ghosh, B. (2013). Botanical Studies, 54(46), 1–10.

    Google Scholar 

  39. Srivastava, V., Khan, S. A., & Banerjee, S. (2009). Plant Cell Tissue and Organ Culture, 99, 193–198.

    Article  CAS  Google Scholar 

  40. Mishra, J., Singh, M., Palni, L. M. S., & Nandi, S. K. (2011). Plant Cell Tissue and Organ Culture, 104, 181–186.

    Article  Google Scholar 

Download references

Acknowledgments

SMH acknowledges the Ministry of Minority Affairs (MOMA) and the University Grant Commission (UGC) for providing Maulana Azad National Fellowship (MANF) as well as for the financial support to conduct these studies. Both authors acknowledge Swami Kamalasthananda, Principal, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata (India) for the facilities provided during the present study. Also, DST-FIST program for infrastructural facilities is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, S.M., Ghosh, B. Somatic Embryogenesis and Synthetic Seed Production—a Biotechnological Approach for True-to-Type Propagation and In Vitro Conservation of an Ornamental Bulbaceous Plant Drimiopsis kirkii Baker.. Appl Biochem Biotechnol 172, 4013–4024 (2014). https://doi.org/10.1007/s12010-014-0817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0817-2

Keywords

Navigation