Skip to main content
Log in

Molecular and Biochemical Characterization in Rauvolfia tetraphylla Plantlets Grown from Synthetic Seeds Following In Vitro Cold Storage

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Synseed technology is one of the most important applications of plant biotechnology for in vitro conservation and regeneration of medicinal and aromatic plants. In the present investigation, synseeds of Rauvolfia tetraphylla were produced using in vitro-proliferated shoots upon complexation of 3 % sodium alginate and 100 mM CaCl2. The encapsulated buds were stored at 4, 8, 12, and 16 °C and high conversion was observed in synseeds stored at 4 °C for 4 weeks. The effect of different medium strength on in vitro conversion response of synseed was evaluated and the maximum conversion (80.6 %) into plantlets was recorded on half-strength woody plant medium supplemented with 7.5 μM 6-benzyladenine and 2.5 μM α-naphthalene acetic acid after 8 weeks of culture. Plantlets with well-developed shoot and roots were hardened and successfully transplanted in field condition. After 4 weeks of transfer to ex vitro conditions, the performance of synseed-derived plantlets was evaluated on the basis of some physiological and biochemical parameters and compared with the in vivo-grown plants. Short-term storage of synthetic seeds at low temperature had no negative impact on physiological and biochemical profile of the plants that survived the storage process. Furthermore, clonal fidelity of synseed-derived plantlets was also assessed and compared with mother plant using rapid amplified polymorphic DNA and inter-simple sequence repeats analysis. No changes in molecular profiles were found among the regenerated plantlets and comparable to mother plant, which confirm the genetic stability among clones. This synseed protocol could be useful for in vitro clonal multiplication, conservation, and short-term storage and exchange of germplasm of this antihypertensive drug-producing plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farooqi, A. A., & Sreeramu, B. S. (2001). Cultivation of medicinal and aromatic crops (pp. 210–211). Hyderabad: Universities Press (India) Pvt. Limited.

    Google Scholar 

  2. Anonymous. (2003). The wealth of India: a dictionary of Indian raw materials and industrial products. New Delhi: CSIR.

    Google Scholar 

  3. Anand, Y., & Bansal, Y. K. (2002). Synthetic seeds: a novel approach of in vitro plantlet formation in Vasaka (Adhatoda vasica. Nees.). Plant Biotechnology, 19, 159–162.

    Article  CAS  Google Scholar 

  4. Singh, A. K., Sharma, M., Varshney, R., Agarwal, S. S., & Bansal, K. C. (2006). Plant regeneration from alginate to encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cellular & Developmental Biology-Plant, 42, 109–113.

    CAS  Google Scholar 

  5. Faisal, M., & Anis, M. (2007). Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. f.) Merrill, an endangered medicinal plant. The Journal of Horticultural Science and Biotechnology, 82, 351–354.

    CAS  Google Scholar 

  6. Ray, A., & Bhattacharyaa, S. (2008). Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina—an effective way of conservation and mass propagation. South African Journal of Botany, 74, 776–779.

    Article  CAS  Google Scholar 

  7. Lata, H., Chandra, S., Khan, I. A., & Elsohly, M. A. (2009). Propagation through alginate encapsulation of axillary buds of Cannabis sativa L.—an important medicinal plant. Physiology & Molecular Biology of Plants, 15, 79–86.

    Article  CAS  Google Scholar 

  8. Singh, S. K., Rai, M. K., Asthana, P., & Sahoo, L. (2012). Alginate-encapsulation of nodal segments for propagation, short-term conservation and germplasm exchange and distribution of Eclipta alba (L.). Acta Physiolgiae Plantarum, 32, 607–610.

    Article  Google Scholar 

  9. Faisal, M., Alatar, A. A., Ahmad, N., Anis, M., & Hegazy, A. K. (2012). Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4 °C. Molecules, 17, 5050–5061.

    Article  CAS  Google Scholar 

  10. Narula, A., Kumar, S., & Srivastava, P. S. (2007). Genetic fidelity of in vitro regenerants, encapsulation of shoot-tips and high diosgenin content in Dioscorea bulbifera L., a potential alternative source of diosgenin. Biotechnol Letters, 29, 623–629.

    Article  CAS  Google Scholar 

  11. Srivastava, V., Khan, S. A., & Banerjee, S. (2009). An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Organ Culture, 99, 193–198.

    Article  CAS  Google Scholar 

  12. Ray, A., & Bhattachrya, S. (2010). Storage and conversion of Eclipta alba synseeds and RAPD analysis of the converted plantlets. Biologia Plantarum, 54, 547–550.

    Article  CAS  Google Scholar 

  13. Lata, H., Chandra, S., Techen, N., Khan, I. A., & Elsohly, M. A. (2011). Molecular analysis of genetic fidelity in Cannabis sativus L. plants grown from synthetic (encapsulated) seeds following in vitro storage. Bioechnology Letters, 33, 2503–2508.

    Article  CAS  Google Scholar 

  14. Mishra, J., Singh, M., Palni, L. M. S., & Nandi, S. K. (2011). Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurrooa. Plant Cell Tissue & Organ Culture, 104, 181–186.

    Article  Google Scholar 

  15. Chandel, K. P. S., & Chaudhury, R. (1995). Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Annals of Botany, 76, 443–450.

    Article  Google Scholar 

  16. Ashmore, S. E. (1997). Current in vitro conservation techniques. In F. Engelmann (Ed.), Status reports on the development and application of in vitro techniques for the conservation and use of plant genetic resources (pp. 5–18). Rome: IPGRI.

    Google Scholar 

  17. Aronen, T. S., Krajnakova, J., Haggman, H. M., & Ryynanen, L. A. (1999). Genetic fidelity of cryopreserved embryogenic cultures of openpollinated Abis cephalonica. Plant Science, 142, 163–172.

    Article  CAS  Google Scholar 

  18. Hirai, D., & Sakai, A. (2000). Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation verification. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of tropical plant germplasm, current research progress and application (pp. 205–211). Rome: JIRCAS-IPGRI.

    Google Scholar 

  19. Lloyd, G., & McCown, B. (1981). Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. International Plant Propagation Society Proceeding, 30, 421–427.

    Google Scholar 

  20. Mackinney, G. (1941). Absorption of light by chlorophyll solution. Journal of Biological Chemistry, 140, 315–322.

    CAS  Google Scholar 

  21. MacLachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration and free amino acid composition of chlorophyll mutant of barley. Canadian Journal of Botany, 41(7), 1053–1062.

    Article  CAS  Google Scholar 

  22. Roja, G., Benjamin, B. D., Heble, M. R., & Chadha, M. S. (1984). Indole alakloids from multiple shoot cultures of Rauvolfia serpentina. Planta Medica, 1, 73–74.

    Google Scholar 

  23. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  24. Weising, K., Nybom, H., Wolff, K., & Meyer, W. (1995). DNA fingerprinting in plants and fungi. Boca Raton: CRC.

    Google Scholar 

  25. Williams, K., Kubelik, A. R., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleic Acid Research, 18, 1631–1635.

    Article  Google Scholar 

  26. Gangopadhyay, G., Bandopadhyay, T., Poddar, R., Basu Gangopadhyay, S., & Mukherjee, K. (2005). Encapsulation of pineapple microshoots in alginate beads for temporary storage. Current Science, 88, 972–977.

    CAS  Google Scholar 

  27. Kavyashree, R., Gayatri, M. C., & Revanasiddaiah, H. M. (2006). Propagation of mulberry variety S54 by synseeds of axillary buds. Plant Cell Tissue & Organ Culture, 84(245), 249.

    Google Scholar 

  28. Siddique, I., & Anis, M. (2009). Morphogenic response of the alginate encapsulated nodal segment and antioxidative enzymes analysis during acclimatization of Ocimum basilicum L. Journal of Crop Science and Biotechnology, 12, 233–238.

    Article  Google Scholar 

  29. Faisal, M., Singh, S., & Anis, M. (2005). In vitro regeneration and plant establishment of Tylophora indica (Burm. f.) Merrill: petiole callus culture. In Vitro Cellular & Developmental Biology-Plant, 41, 511–515.

    Article  Google Scholar 

  30. Shahzad, A., Faisal, M., & Anis, M. (2007). Micropropagation through excised root culture of Clitoria ternatea L., and comparison between in vitro regenerated plants and seedlings. Annals of Applied Biology, 150, 341–349.

    Article  CAS  Google Scholar 

  31. Bekheet, S. A., Taha, H. S., Saker, M. M., & Solliman, M. E. (2007). Application of cryopreservation technique for in vitro grown date palm (Phoenix dactylifera L.) cultures. Journal of Applied Science Research, 3, 853–866.

    Google Scholar 

  32. Jokipii, S., Ryynanenb, L., Kallioc, P. T., Aronenb, T., & Haggman, H. (2004). A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. × Populus tremuloides Michx. Plant Science, 166, 799–806.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project number RGP-VPP-175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Faisal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faisal, M., Alatar, A.A. & Hegazy, A.K. Molecular and Biochemical Characterization in Rauvolfia tetraphylla Plantlets Grown from Synthetic Seeds Following In Vitro Cold Storage. Appl Biochem Biotechnol 169, 408–417 (2013). https://doi.org/10.1007/s12010-012-9977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9977-0

Keywords

Navigation