Skip to main content

Advertisement

Log in

An Efficient and Reproducible Method for in vitro Clonal Multiplication of Rauvolfia tetraphylla L. and Evaluation of Genetic Stability using DNA-Based Markers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient protocol is described for the rapid in vitro clonal propagation of an endangered medicinal plant, Rauvolfia tetraphylla L., through high frequency shoot induction from nodal explants collected from young shoots of a field grown plant. Effects of growth regulators [6-benzyladenine (BA), kinetin (Kin) 2iP, or α-naphthalene acetic acid (NAA)], carbohydrates, different medium [Murashige and Skoog (MS), Woody Plant Medium (WPM), Gamborg medium (B5), Linsmier and Skoog medium (LS)], and various pH levels on in vitro morphogenesis were investigated. The highest frequency of shoot regeneration (90 %) and maximum number of shoot (35.4 ± 2.3) per explant were observed on WPM medium supplemented with 7.5 μM BA, 2.5 μM NAA, and 30 g/l sucrose at pH 5.8. Well-developed shoots, 4–5 cm in length, were successfully rooted ex vitro at 90 % by a 30-min pulse treatment with 150 μM IBA prior to their transfer in planting substrates. The survival rate of transplantation reached 90 % when transferred to field condition. Genetic stability of micropropagated plantlets was assessed and compared with mother plant using Random Amplified Polymorphic DNA and Inter Simple Sequence Repeats markers. No variation was observed in DNA fingerprinting patterns among the micropropagated plants, which were similar to that of the donor plant illustrating their genetic uniformity and clonal fidelity. This confirms that clonal propagation of this plant using axillary shoot buds can be used for commercial exploitation of the selected genotype where a high degree of fidelity is an essential prerequisite. The work contributed to a better in vitro regeneration and clonal mass multiplication of R. tetraphylla and to develop a strategy for the germplasm conservation of this endangered medicinal plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Farooqi, A. A., & Sreeramu, B. S. (2001). Cultivation of medicinal and aromatic crops (pp. 210–211). India: University Press Ltd.

    Google Scholar 

  2. Villar, R., Calleja, J. M., Morales, C., & Caceres, A. (1998). Screening of Guatemalan medicinal Plants for platelet antisegregant activity. Phytological Research, 11, 441–445.

    Article  Google Scholar 

  3. Anonymous. (2003). The wealth of India: A Dictionary of Indian Raw Materials and Industrial Products. New Delhi: CSIR.

    Google Scholar 

  4. Faisal, M., & Anis, M. (2005). Shoot multiplication in Rauvolfia tetraphylla using thidiazuron. Plant Cell, Tissue and Organ Culture, 80, 187–190.

    Article  CAS  Google Scholar 

  5. Larkin, P., & Scowcroft, W. R. (1981). Somaclonal variation, a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197–214.

    Article  Google Scholar 

  6. Gould, A. R. (1986). Factors controlling generation of variability in vitro. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics in plants. 3. Plant regeneration and genetic variability (pp. 549–567). Orlando: Academic.

    Google Scholar 

  7. Smykal, P., Valledore, L., Rodriguez, R., & Griga, M. (2007). Assesment of genetic and epigenetic stability in long-term in in vitro shoot culture of pea (Pisum sativum). Plant Cell Reports, 26, 1985–1998.

    Article  CAS  Google Scholar 

  8. Bhatia, R., Singh, K. P., Jhang, T., & Sharma, T. R. (2009). Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Scientia Horticulturae, 119, 208–211.

    Article  CAS  Google Scholar 

  9. Rathore, M. S., Chikara, J., Shaik, G., Mastan, S. G., Rahman, H., Anand, K. G. V., et al. (2011). Assessment of genetic stability and instability of tissue culture-propagated plantlets of Aloe vera L. by RAPD and ISSR markers. Biotechnology and Applied Biochemistry, 165, 1356–1365.

    Article  CAS  Google Scholar 

  10. Sharma, D., Sharma, S., & Baruah, A. (1999). Micropropagation and in vitro flowering of Rauvolfia tetraphylla; a potent sourceof antihypertensive drug. Planta Medica, 65, 277–278.

    Article  Google Scholar 

  11. Lloyd, G., & McCown, B. (1981). Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. The International Plant Propagators Society, 30, 421–427.

    Google Scholar 

  12. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  13. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrients requirement of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  14. Schenk, R. U., & Hildebrandt, A. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyle-donous plant cell cultures. Canadian Journal of Botany, 50, 199–204.

    Article  CAS  Google Scholar 

  15. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  16. Williams, K., Kubelik, A. R., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleic Acids Research, 18, 1631–1635.

    Article  Google Scholar 

  17. Caro, L. A., Polci, P. A., Lindström, L. I., Echenique, C. V., & Hernández, L. F. (2002). Micropropagation of Prosopis chilensis (Mol.) Stuntz from young and mature plants. Biocell, 26, 25–33.

    CAS  Google Scholar 

  18. Haw, A. B., & Keng, C. L. (2003). Micropropagation of Spilanthes acmella L., a bio-insecticide plant, through proliferation of multiple shoots. Journal of Applied Horticultre, 5, 65–68.

    Google Scholar 

  19. Faisal, M., Ahmad, N., & Anis, M. (2007). An efficient micropropagation system for Tylophora indica: an endangered, medicinally important plant. Plant Biotechnology Reports, 1, 155–161.

    Article  Google Scholar 

  20. Jahan, A. A., Anis, M., & Aref, I. M. (2011). Preconditioning of axillary buds in thidiazuron-supplemented liquid media improves in vitro shoot multiplication in Nyctanthes arbor-tristis L. Biotechnology and Applied Biochemistry, 163, 851–859.

    Article  CAS  Google Scholar 

  21. Benmahioul, B., Dorion, N., Kaid-Harche, M., & Daguin, F. (2012). Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell and Tissue Culture, 108, 353–358.

    Article  Google Scholar 

  22. Shahzad, A., Parveen, S., & Fatema, M. (2011). Development of a regeneration system via nodal segment culture in Veronica anagallis-aquatica L.—an amphibious medicinal plant. Journal of Plant Interactions, 6, 61–68.

    Article  CAS  Google Scholar 

  23. Faisal, M., Siddique, I., & Anis, M. (2006). In vitro rapid regeneration of plantlets from nodal explants of Mucuna pruriens—a valuable medicinal plant. The Annals of Applied Biology, 148, 1–6.

    Article  CAS  Google Scholar 

  24. Nagarathnamma, M., Sudarshana, M. S., Niranjan, M. H., & Pandurangamurhty, G. (2010). Rapid regeneration of Enicostemma littorale Blume from leaf and stem cultures. Journal of Plant Interactions, 5, 69–70.

    Article  CAS  Google Scholar 

  25. Ma, G., TeixeiradaSilva, J. A., Lu, J., Zhang, X., & Zhao, J. (2011). Shoot organogenesis and plant regeneration in Metabriggsia ovalifolia. Plant Cell, Tissue and Organ Culture, 105, 355–361.

    Article  CAS  Google Scholar 

  26. Alatar, A. A., Faisal, M., Hegazy, A. K., & Hend, A. A. (2012). High frequency shoots regeneration and plant establishment of Rauvolfia serpentine; an endangered medicinal plant. Journal of Medicinal Plants Research, 6, 3324–3329.

    CAS  Google Scholar 

  27. Samir, C. D. (2004). Clonal propagation of dwarf raspberry (Rubus pubescens Raf.) through in vitro axillary shoot proliferation. Plant Growth Regulation, 43, 179–186.

    Article  Google Scholar 

  28. Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K., et al. (2004). Auxin regulation of cytokinin biosynthesis in Arbdiopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America, 101, 8039–8044.

    Article  Google Scholar 

  29. Declerck, V., & Korban, S. S. (1994). Effects of source of macro-nutrients and plant growth regulator concentrations on shoot proliferation of Cornus florida. Plant Cell, Tissue and Organ Culture, 38, 57–60.

    Article  CAS  Google Scholar 

  30. Bhatt, I. D., & Dhar, U. (2004). Factors controlling micropropagation of Myrica esculenta buch.—Ham. ex D. Don: a high value wild edible of Kumaun Himalaya. African Journal of Biotechnology, 3, 534–540.

    CAS  Google Scholar 

  31. Raghu, A. V., Geetha, S. P., Martin, G., Balachandran, I., & Mohanan, K. V. (2010). Micropropagation of Tribulus terrestris. Indian Journal of Natural Products and Resources, 1, 232–235.

    CAS  Google Scholar 

  32. Minocha, S. C. (1987). pH of the medium and growth and metabolism of cells in culture. In: J. M. Bonga & D. J. Durzan (Eds.). Cell and Tissue culture in Forestry. Vol. 1. General Principles and Biotechnology (pp. 125–144). Dordrecht, Netherlands: Martinus Nijhoff Publishers.

  33. Brown, D. C. W., Leung, D. W. M., & Thorpe, T. A. (1979). Osmotic requirement for shoot formation in tobacco callus. Physiologia Plantarum, 46, 36–41.

    Article  CAS  Google Scholar 

  34. Gurel, S., & Gulsen, Y. (1998). The effects of sucrose agar and pH levels on in vitro shoot production of Almond (Amygdalus communis L.). Turkish Journal of Botany, 22, 363–373.

    Google Scholar 

  35. Naik, M. P., et al. (2010). Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell, Tissue and Organ Culture, 100, 235–239.

    Article  Google Scholar 

  36. Bhatia, P., & Ashwath, N. (2005). Effect of medium pH on shoot regeneration from the cotyledonary explants of tomato. Biotechnology, 4, 7–10.

    Article  Google Scholar 

  37. De Paiva Neto, V. B., Ribeiro da Mota, T., & Otoni, W. C. (2003). Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell, Tissue and Organ Culture, 75, 159–167.

    Article  Google Scholar 

  38. Sujatha, G., & Kumari, B. D. R. (2008). Micropropagation, encapsulation and growth of Artemisia vulgaris node explants for germplasm preservation. South African Journal of Botany, 74, 93–100.

    Article  CAS  Google Scholar 

  39. Steffen, J. D., Sachs, R. M., & Hackett, W. P. (1988). Growth and development of reproductive and vegetative tissues of Bougainvillea cultured in vitro as a function of carbohydrate. American Journal of Botany, 75, 1219–1224.

    Article  CAS  Google Scholar 

  40. Wright, M. S., Koehler, S. M., Hinchee, M. A., & Carnes, M. G. (1986). Plant regeneration by organogenesis in Glycine max. Plant Cell Reports, 5, 150–154.

    Article  CAS  Google Scholar 

  41. Martin, K. P. (2003). Rapid in vitro multiplication and ex vitro rooting of Rotula aquatica Lour., a rare rhoeophytic woody medicinal plant. Plant Cell Reports, 21, 415–420.

    CAS  Google Scholar 

  42. Martins, M., Sarmento, D., & Oliveira, M. M. (2004). Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Reports, 23, 492–496.

    Article  CAS  Google Scholar 

  43. Borchetia, S., Das, S. C., Handique, P. J., & Sudripta, D. (2009). High multiplication frequency and genetic stability for commercialization of the three varieties of micropropagated tea plants (Camellia spp.). Scientia Horticulturae, 120, 544–550.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for financial assistance through the research group project No. RGP-VPP-175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Faisal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faisal, M., Alatar, A.A., Ahmad, N. et al. An Efficient and Reproducible Method for in vitro Clonal Multiplication of Rauvolfia tetraphylla L. and Evaluation of Genetic Stability using DNA-Based Markers. Appl Biochem Biotechnol 168, 1739–1752 (2012). https://doi.org/10.1007/s12010-012-9893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9893-3

Keywords

Navigation