Skip to main content
Log in

Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A simple and efficient system was developed for rapid somatic embryogenesis from leaf explants of Merwilla plumbea, a traditional but threatened medicinal plant in South Africa. Friable embryogenic callus (FEC) was obtained from leaf explants on embryogenic callus induction medium containing agar-solidified Murashige and Skoog (MS) salts and vitamins, 8.3 μM picloram, 2.3 μM thidiazuron (TDZ) and 20 μM glutamine. FEC was subsequently incubated in embryogenic callus proliferation medium containing 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.1 μM picloram for 7 days before it was transferred to liquid somatic embryo medium (SEML) containing MS medium supplemented with 0.4 μM picloram and 0.9 μM TDZ. In SEML supplemented with 150 mg L−1 haemoglobin, 5.4–35.6 somatic embryos per settled cell volume of 500 mg FEC were obtained. These embryos were at globular to cotyledonary developmental stages. Embryo maturation, germination and plant formation rate was 94.4% following transfer of SEs to half-strength MS medium supplemented with 1.4 μM gibberellic acid. Plantlets transferred into soil acclimatized in the misthouse and established successfully in the greenhouse (100%). This is the first report on induction of Merwilla plumbea somatic embryogenesis. The protocol developed offers controlled vegetative propagation by alleviating extinction threats, ensures germplasm conservation and provides a system for physiological, biochemical, molecular and cellular studies of embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

ECIM:

Embryogenic callus induction medium

ECPM:

Embryogenic callus proliferation medium

FEC:

Friable embryogenic callus

GA3 :

Gibberellic acid

MS:

Murashige and Skoog medium

OEs:

Organic elicitors

SE:

Somatic embryo

SEs:

Somatic embryos

SEML :

Liquid somatic embryo medium

TDZ:

Thidiazuron

References

  • Al-Khayri JM (2011) Influence of yeast extract and casein hydrolysate on callus multiplication and somatic embryogenesis of date palm (Phoenix dactylifera L.). Sci Hortic. doi:10.1016/j.scienta.2011.07.024 (in press)

  • Anthony P, Davey MR, Power JB, Lowe KC (1997) Enhanced mitotic division of cultured Passiflora and Petunia protoplasts by oxygenated perfluorocarbon and haemoglobin. Biotechnol Technol 11:581–584

    Article  CAS  Google Scholar 

  • Azhakanandam K, Lowe KC, Power JB, Davey MR (1997) Haemoglobin (Erythrogen)-enhanced mitotic division and plant regeneration from cultured rice protoplasts (Oryza sativa L.). Enzyme Micro Technol 21:572–577

    Article  CAS  Google Scholar 

  • Bakhshaie M, Babalar M, Mirmasoumi M, Khalighi A (2010) Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cell Tiss Organ Cult 102:229–235

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2009) In vitro propagation of Psoralea corylifolia L. by somatic embryogenesis in cell suspension culture. Acta Physiol Plant 31:1119–1127

    Article  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Dal Vesco LL, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Hortic 111:228–234

    Article  CAS  Google Scholar 

  • Della Loggia R, Del Negro P, Tubaro A, Barone G, Parrilli M (1989) Homoisoflava-nones as anti-inflammatory principles. Planta Med 55:587–588

    Article  Google Scholar 

  • Deo PC, Taylor M, Harding RM, Tyagi AP, Becker DK (2010) Initiation of embryogenic cell suspensions of taro (Colocasia esculenta var. esculenta) and plant regeneration. Plant Cell Tiss Organ Cult 100:283–291

    Article  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    Article  PubMed  CAS  Google Scholar 

  • Gray DJ, McColley DW, Compton ME (1993) High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J Am Soc Hortic Sci 118:425–432

    Google Scholar 

  • Heller W, Tamm C (1981) Homoisoflavanones and biogenetically related compounds. Fortschritte der Chemie Organischer Naturstoffe 40:106–152

    Google Scholar 

  • Hutchings A (1989) A survey and analysis of traditional medicinal plants as used by the Zulu, Xhosa and Sotho. Bothalia 19:111–123

    Google Scholar 

  • Hutchison MJ, Murch SJ, Saxena PK (1996) Morphoregulatory role of TDZ: evidence of the involvement of endogenous auxin in TDZ-induced somatic embryogenesis of geranium (Pelargonium × horturum Bailey). J Plant Physiol 149:573–579

    Article  Google Scholar 

  • Jayabalan N, Anthony P, Davey MR, Power JB, Lowe KC (2004) Hemoglobin promotes somatic embryogenesis in peanut cultures. Art Cells Blood Subst Immobil Biotechnol 32:149–157

    Article  CAS  Google Scholar 

  • Jeong JH, Jung SJ, Murthy HN, Yu KW, Paek KY, Moon HK, Choi YE (2005) Production of eleutherosides in in vitro regenerated embryos and plantlets of Eleutherococcus chiisanensis. Biotechnol Lett 27:701–704

    Article  PubMed  CAS  Google Scholar 

  • Kong L, von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss Organ Cult 106:115–125

    Article  CAS  Google Scholar 

  • Lu W, Enomoto K, Fukunaga Y, Kuo C (1988) Regeneration of petals, stamens and ovules in explants from perianth of Hyacinthus orientalis L. importance of explants age and exogenous hormones. Planta 175:478–484

    Article  CAS  Google Scholar 

  • Martin KP (2004) Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L. In Vitro Cell Dev Biol Plant 40:586–591

    Article  CAS  Google Scholar 

  • Maruyama E, Hosoi Y, Ishii K (2003) Somatic embryo culture for propagation, artificial seed production, and conservation of sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.). J For Res 8:1–8

    Article  Google Scholar 

  • McCartan SA, Van Staden J (1998) Micropropagation of the medicinal plant, Scilla natalensis Planch. Plant Growth Regul 25:177–180

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ncube B, Finnie JF, Van Staden J (2011) Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S Afr J Bot 77:387–396

    Article  CAS  Google Scholar 

  • Nhut DT, Bui VL, Minh NT, Teixeira da Silva JA, Fukai S, Tanaka M, Van Tran Thanh K (2002) Somatic embryogenesis through pseudo-bulblet transverse thin cell layer of Lilium longiflorum. Plant Growth Reg 37:193–198

    Article  CAS  Google Scholar 

  • Parimalan R, Akshatha V, Giridhar P, Ravishankar GA (2010) Somatic embryogenesis and Agrobacterium-mediated transformation in (Bixa orellana L.). Plant Cell Tiss Organ Cult 105:317–328

    Article  Google Scholar 

  • Pohl T, Koorbanally C, Crouch NR, Mulholland DA (2001) Secondary metabolites of Scilla plumbea, Ledebouria cooperi and Ledebouria ovatifolia (Hyacinthaceae). Biochem Syst Ecol 29:857–860

    Article  PubMed  CAS  Google Scholar 

  • Scott-Shaw R (1999) Rare and Threatened Plants of Kwazulu-Natal and Neighbouring Regions. Kwazulu-Natal Nature Conservation Service, Pietermaritzburg

    Google Scholar 

  • Shamsudeen Varisai M, Wang CS, Thiruvengadam M, Jayabalan N (2004) In vitro plant regeneration via somatic embryogenesis through cell suspension cultures of horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. In Vitro Cell Dev Biol Plant 40:284–289

    Article  Google Scholar 

  • Siddiqui Z, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tiss Organ Cult 104:247–256

    Article  Google Scholar 

  • Tribulato A, Remotti PC, Loffler HJM (1997) Somatic embryogenesis and plant regeneration in Lilium longiflorum Thunb. Plant Cell Rep 17:113–118

    Article  CAS  Google Scholar 

  • Vasil IK (1988) Progress in the regulation and genetic manipulation of cereal crops. Biotechnol 6:397–402

    Article  Google Scholar 

  • Watt JM, Breyer-Brandwijk MG (1962) The Medicinal and Poisonous Plants of Southern and Eastern Africa. Livingstone Ltd, Edinburgh

    Google Scholar 

Download references

Acknowledgments

The financial support by National Research Foundation (NRF), Pretoria and the University of KwaZulu-Natal, Pietermaritzburg is gratefully acknowledged. The authors are grateful to the Center for Electron Micorscopy UKZN, Pietermaritzburg for microscopic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskaran, P., Van Staden, J. Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta. Plant Cell Tiss Organ Cult 109, 517–524 (2012). https://doi.org/10.1007/s11240-012-0118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0118-9

Keywords

Navigation