Skip to main content
Log in

In vitro propagation and conservation of Indian sarsaparilla, Hemidesmus indicus L. R. Br. through somatic embryogenesis and synthetic seed production

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A protocol has been developed for achieving somatic embryogenesis from callus derived from nodal cuttings and production of synthetic seeds in Hemidesmus indicus L. R. Br. a highly traded ethnomedicinal plant. Proembryogenic, friable, light yellowish callus was induced from the basal cut end of the nodal cuttings on Murashige and Skoog (MS) medium supplemented with 3 μM indole-3-butyric acid (IBA). The highest rate of somatic embryogenesis (92 %) was observed when the callus was subcultured on half strength MS medium supplemented with 2 μM IBA. On induction medium somatic embryos were developed up to the torpedo stage. Further elongation and germination of somatic embryos were obtained in MS medium supplemented with 4 μM 6-benzylaminopurine (BA) in combination with 1.5 μM gibberellic acid (GA3). Somatic embryos were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V) dropped into 75 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds and later transferred to MS medium for germination. The synthetic seeds were successfully germinated on medium even after 120 days of storage at 4 °C. The plantlets were eventually transferred to soil with 92 % success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

GA3 :

Gibberellic acid

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog

NAA:

Naphthalene acetic acid

References

  • Aboshama HMS (2011) Direct somatic embryogenesis of pepper (Capsicum annuum L.). World J Agri Sci 7:755–762

    CAS  Google Scholar 

  • Agrawal V, Sardar PR (2007) In vitro regeneration through somatic embryogenesis and organogenesis using cotyledons of Cassia angustifolia Vahl. In Vitro Cell Dev Biol Plant 43:585–592

    Article  CAS  Google Scholar 

  • Alam MI, Auddy B, Gomes A (1996) Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus, Pluchea indica). Phytother Res 10:58–61

    Article  CAS  Google Scholar 

  • Andlib A, Verma RN, Batra A (2011) Synthetic seeds an alternative source for quick regeneration of a zero calorie herb—Stevia rebaudiana Bertoni. J Pharm Res 4:2007–2009

    CAS  Google Scholar 

  • Awal A, Taha RM, Hasbullah NA (2007) In vitro formation of synthetic seed of Begonia × Hiemalis fotch. Int J Environ Sci 2:189–192

    Google Scholar 

  • Bapat VA, Rao PS (1990) In vitro growth of encapsulated axillary buds of mulberry (Morus indica L.). Plant Cell Tissue Organ Cult 20:69–70

    Article  Google Scholar 

  • Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). Arab J Biotech 9:415–426

    Google Scholar 

  • Capuana M, Petrini G, Di Marco A, Giannini R (2007) Plant regeneration of common ash (Fraxinus excelsior L.) by somatic embryogenesis. In Vitro Cell Dev Biol Plant 43:101–110

    Google Scholar 

  • Castillo B, Smith MAL (1997) Direct somatic embryogenesis from Begonia gracilis explants. Plant Cell Rep 16:385–388

    CAS  Google Scholar 

  • Castillo B, Smith MAL, Yadava UL (1998) Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep 17:172–176

    Article  CAS  Google Scholar 

  • Chai M, Jia Y, Chen S, Gao Z, Wang H, Liu L, Wang P, Hou D (2011) Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell Tissue Organ Cult 104:187–192

    Article  CAS  Google Scholar 

  • Chandra R, Deepak D, Khare A (1994) Pregnane glycosides from Hemidesmus indicus. Phytochemistry 35:1545–1548

    Article  CAS  Google Scholar 

  • Chatterjee I, Chakravarthy AK, Gomes A (2006) Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R. Br. J Ethnopharmacol 106:38–43

    Article  PubMed  CAS  Google Scholar 

  • Corral P, Mallon R, Rodrıguez-Oubina J, Gonzalez ML (2011) Multiple shoot induction and plant regeneration of the endangered species Crepis novoana. Plant Cell Tissue Organ Cult 105:211–217

    Article  CAS  Google Scholar 

  • Daud N, Taha RM, Hasbullah NA (2008) Artificial seed production from encapsulated microshoots of Saintpaulia ionantha Wendl. (African violet). J App Sci 8:4662–4667

    Article  Google Scholar 

  • Deepak S, Srivastava S, Khare A (1995) Indicusin: a pregnane diester triglycoside from Hemidesmus indicus R. Br. Nat Proc Lett 6:81–86

    Article  CAS  Google Scholar 

  • Deepak S, Srivastava S, Khare A (1997) Pregnane glycosides from Hemidesmus indicus. Phytochemistry 44:145–151

    Article  PubMed  CAS  Google Scholar 

  • Dhandapani M, Kim DH, Hong S (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cell Dev Biol Plant 44:18–25

    CAS  Google Scholar 

  • Faisal M, Ahmad N, Anis M (2006) In vitro plant regeneration from Alginate Encapsulated microcuttings of Rauvolfia tetraphylla L. Am Eur J Agric Environ Sci 1:1–6

    Google Scholar 

  • Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi baker. Plant Cell Rep 13:381–385

    Article  CAS  Google Scholar 

  • Gupta MM, Verma RK, Misra LN (1992) Terpenoids from Hemidesmus indicus. Phytochemistry 31:4036–4037

    Article  CAS  Google Scholar 

  • Gurel E, Yucesan B, Aglic E, Gurel S, Verma SK, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tissue Organ Cult 104:217–225

    Article  CAS  Google Scholar 

  • Hassan NS (2003) In vitro propagation of jojoba (Simmondsia chinensis L.) through alginate-encapsulated shoot apical and axillary buds. Int J Agri Biol 5:513–516

    Google Scholar 

  • Kirtikar KR, Basu BD (1975) Indian medicinal plants, vol 111. Periodical Experts, Delhi

    Google Scholar 

  • Kordestani GK, Karami O (2008) Picloram induced somatic embryogenesis in leaves of strawberry (Fragaria ananassa L.). Acta Biol Craco Seri Botanica 50:69–72

    Google Scholar 

  • Ma G, Lu J, Teixeira da Silva JA, Zhang X, Zhao J (2011) Shoot organogenesis and somatic embryogenesis from leaf and shoot explants of Ochna integerrima (Lour). Plant Cell Tissue Organ Cult 104:157–162

    Article  CAS  Google Scholar 

  • Malathy S, Pai JS (1998) In vitro propagation of Hemidesmus indicus. Fitoterapia 69:5333–5536

    Google Scholar 

  • Mandal S, Das PC, Joshi PC, Das A, Chatterjee A (1991) Hemidesmine a new coumarino lignoid from Hemidesmus indicus R. Br. Ind J Chem 30:712–713

    Google Scholar 

  • Mathur J, Ahuja PS, Lal N, Mathur AK (1989) Propagation of Valeriana wallichii DC using encapsulated apical and axial shoot buds. Plant Sci 60:111–116

    Article  Google Scholar 

  • Misra N, Misra P, Datta SK, Mehrotra S (2005) In vitro biosynthesis of antioxidants from Hemidesmus indicus R. Br. cultures. In Vitro Cell Dev Biol Plant 41:285–290

    Article  CAS  Google Scholar 

  • Mohanraj R, Ananthan R, Bai VN (2009) Production and storage of synthetic seeds in Coelogyne breviscapa Lindl. Asian J Biotech 1:124–128

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (2002) Factors affecting germination and conversion frequency of somatic embryos of Tea (Camellia sinensis (L.) O Kuntze. J Plant Physiol 159:1317–1321

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthi BR, Seshadri TR (1941) A study of the chemical components of the roots of Decalepis hamiltoni, Part III. Comparison with Hemidesmus indicus (Indian sarsaparilla). Proc Ind Acad Sci 13:399–403

    Google Scholar 

  • Nadkarni AN (1989) Indian materia medica, vol I. Popular Book Depot, Mumbai

    Google Scholar 

  • Nagarajan S, Rao LJ (2003) Determination of 2-hydroxy-4-methoxybenzaldehyde in roots of Decalepis hamiltonii Wight & Arn. and Hemidesmus indicus R. Br. J AOAC Int 86:564–567

    PubMed  CAS  Google Scholar 

  • Nower AA, Ali EAM, Rizkalla AA (2007) Synthetic seeds of pear (Pyrus communis L.) rootstock storage in vitro. Aus J Basic App Sci 1:262–270

    CAS  Google Scholar 

  • Padhy SN, Mahato SB, Dutta NL (1973) Asclepiadaceae Terpenoides from the roots of Hemidesmus indicus. Phytochemistry 12:217–218

    Article  CAS  Google Scholar 

  • Papanastasiou I, Soukouli K, Moschopoulou G, Kahia J, Kintzios S (2008) Effect of liquid pulses with 6-benzyladenine on the induction of somatic embryogenesis from coffee (Coffea arabica L.) callus cultures. Plant Cell Tissue Organ Cult 92:215–225

    Article  CAS  Google Scholar 

  • Patnaik J, Debata BK (1997) Micropropagation of Hemidesmus indicus (L.) R. Br. through axillary bud culture. Plant Cell Rep 15:427–430

    Article  Google Scholar 

  • Pattnaik S, Chand PK (2000) Morphogenic response of the alginate encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tissue Organ Cult 64:177–185

    Article  Google Scholar 

  • Paul S, Dam A, Bhattacharyya A, Bandyopadhyay TK (2011) An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tissue Organ Cult 105:271–283

    Article  Google Scholar 

  • Prakash KA, Sethi D, Deepak A, Khare A, Khare MP (1991) Two pregnane glycosides from Hemidesmus indicus. Phytochemistry 30:297–299

    Article  CAS  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Ray A, Bhattacharya S (2008) Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina—an effective way of conservation and mass propagation. South Afr J Bot 74:776–779

    Article  CAS  Google Scholar 

  • Roy B, Mandal AB (2008) Development of synthetic seeds involving androgenic and proembryos in elite indica rice. Ind J Biotech 7:515–519

    CAS  Google Scholar 

  • Sakamoto Y, Onishi N, Hirosawa T (1995) Delivery systems for tissue culture by encapsulation. In: Aitken-Christie K, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Acad. Publ, Dordrecht, pp 215–244

    Google Scholar 

  • Sarmah DK, Borthakur M, Borua PK (2010) Artificial seed production from encapsulated PLBs regenerated from leaf base of Vanda coerulea Grifft. ex. Lindl. an endangered orchid. Curr Sci 98:686–690

    CAS  Google Scholar 

  • Sharma PK, Dhyani SK, Shankar V (1979) Some useful and medicinal plants of the district Dehradun and Siwalik. J Sci Res Plant Med 1:17–43

    Google Scholar 

  • Singh SK, Rai MK, Asthana P, Pandey S, Jaiswal VS, Jaiswal U (2009) Plant regeneration from alginate-encapsulated shoot tips of Spilanthes acmella (L.) Murr., a medicinally important and herbal pesticidal plant species. Acta Physiol Plant 31:649–653

    Article  CAS  Google Scholar 

  • Sivanesan I, Lim MY, Jeong BR (2011) Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata Lam. var. rubriflora Makino. Plant Cell Tissue Organ Cult 107:365–369

    Article  Google Scholar 

  • Soneji JR, Rao PS, Mhatre M (2002) Germination of synthetic seeds of pineapple (Ananas comosus L.). Plant Cell Rep 20:891–894

    Article  CAS  Google Scholar 

  • Sreekumar S, Seeni S, Pushpangadan P (2000) Micropropagation of Hemidesmus indicus for cultivation and production of 2-hydroxy 4-methoxybenzaldehyde. Plant Cell Tissue Organ Cult 62:211–218

    Article  CAS  Google Scholar 

  • Tejavathi DH, Gayathramma K, Sowmya R (2006) Production of plantlets from encapsulated in vitro shoot buds and somatic embryos of Agave vera-cruz Mill. Plant Cell Biotech Mol Biol 7:183–186

    Google Scholar 

  • Ved DK, Goraya GS (2007) Demand and supply of medicinal plants in India. Report published by National Medicinal Plants Board, New Delhi and Foundation for Revitalization of Local Health Traditions, Bangalore, p 14

  • West TP, Ravindra MB, Preece JE (2006) Encapsulation, cold storage, and growth of Hibiscus moscheutos nodal segments. Plant Cell Tissue Organ Cult 87:223–231

    Article  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

Download references

Acknowledgments

TDT acknowledges the financial assistance from UGC in the form of a major research project (Project no. 38-233/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Additional information

Communicated by M. Horbowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheruvathur, M.K., Najeeb, N. & Thomas, T.D. In vitro propagation and conservation of Indian sarsaparilla, Hemidesmus indicus L. R. Br. through somatic embryogenesis and synthetic seed production. Acta Physiol Plant 35, 771–779 (2013). https://doi.org/10.1007/s11738-012-1117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1117-5

Keywords

Navigation