Skip to main content
Log in

Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To optimize indirect regeneration (IR) and direct regeneration (DR) in Rosa hybrida cv. Apollo different explant types and different concentrations of plant growth regulators were investigated. Among the different auxins studied and over all explant types, 10 µM 2,4-dichlorophenoxyacetic acid (2,4-D) promoted the highest frequency of callus production for IR. The highest frequency of regeneration (60.8 %) was obtained when calli were transferred to Murashige and Skoog medium supplemented with 2.5 µM thidiazuron (TDZ) and 2 µM gibberellic acid. The highest frequency of regeneration (80.2 %) for DR was obtained from leaves cultured on the medium containing 10 µM TDZ. The efficiency of IR and DR were compared in four different rose cultivars including ‘Apollo’, ‘Black Baccara’, ‘Maroussia’ and ‘Amanda’. The frequency of regeneration in all four cultivars was significantly higher in DR compared to IR. Also shoots regenerated by DR appeared earlier than the shoots regenerated by IR. The results of flow cytometry showed that the shoots derived from IR to DR were tetraploid like the original cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

MS medium:

Murashige and Skoog medium

2,4,5-T:

2,4,5-Trichlorophenoxyacetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

TDZ:

Thidiazuron

BA:

Benzyladenine

GA3 :

Gibberellic acid 3

NAA:

α-Naphthalene acetic acid

IR:

Indirect regeneration

DR:

Direct regeneration

References

  • Arene L, Pellegrino C, Gudin S (1993) A comparison of the somaclonal variation level of Rosa hybrida L. cv. Meirutral plants regenerated from callus or DR induction from different vegetative and embryonic tissues. Euphytica 71:83–90

    Article  Google Scholar 

  • Bakshi S, Roy NK, Sahoo L (2012) Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tiss Organ Cult 110:77–91

    Article  CAS  Google Scholar 

  • Bao Y, Liu G, Shi X, Xing W, Ning G, Liu J, Bao M (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha’. Plant Cell Tiss Org Cult 109:411–418

    Article  CAS  Google Scholar 

  • Burger DW, Liu L, Zary KW, Lee CI (1990) Organogenesis and plant regeneration from immature embryos of R. hybrida L. Plant Cell Tiss Org Cult 21:147–152

    Article  Google Scholar 

  • De Wit JC, Esendam HF, Honkanen JJ, Tuominen U (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep 9:456–458

    Article  Google Scholar 

  • Dohm A, Ludwig C, Nehring K, Debener T (2001) Somatic embryogenesis in roses. Acta Hortic 547:341–347

    CAS  Google Scholar 

  • Dubois LAM, de Vries DP (1995) Preliminary report on the direct regeneration of adventitious buds on leaf explants of in vivo grown glasshouse rose cultivars. Gartenbauwissenschaft 60:249–253

    CAS  Google Scholar 

  • Dubois LAM, de Vries DP, Koot A (2000) Direct shoot regeneration in the rose: genetic variation of cultivars. Gartenbauwissenschaft 65(1):45–49

    Google Scholar 

  • Estabrooks T, Browne R, Dong Z (2007) 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar Livin Easy’ (Rosa sp.). Plant Cell Rep 26:153–160

    Article  PubMed  CAS  Google Scholar 

  • Haghighat Afshar M, Jafarkhani KM, Khalighi A, Habashi A, Mohammadi A (2011) Direct shoot regeneration on three cultivars of Rosa Hybrida using five rexplant. Am Eurasian J Agric Environ Sci 10(6):962–967

    Google Scholar 

  • Hsia C, Korban S (1996) Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tiss Org Cult 44:1–6

    Article  CAS  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Ibrahim R, Debergh PC (1999) Improvement of adventitious bud formation and plantlet regeneration from in vitro leaf explants of Rosa hybrida L. Biotechnol Breed 4:413

    Google Scholar 

  • Ishioka N, Tanimoto S (1990) Plant regeneration from bulgarian rose callus. Plant Cell Tissue Organ Cult 22:197–199

    Article  Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Khosravi R, Kermani MJ, Nematzadeh GA, Bihamta MR, Yokoya K (2007) Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160:267–275

    Article  Google Scholar 

  • Kim SW, Oh SC, Liu JR (2003a) Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell Tissue Organ Cult 74:61–66

    Article  CAS  Google Scholar 

  • Kim SW, Seung CO, Dong SI, Liu JR (2003b) Plant regeneration of rose (Rosa hybrida) from embryogenic cell-derived protoplasts. Plant Cell Tissue Organ Cult 73:15–19

    Article  CAS  Google Scholar 

  • Kim CH, Oh JY, Chung J-D, Burrell AM, Byrne DH (2004) Somatic embryogenesis and plant regeneration from in vitro-grown leaf explants of rose. Hortic Sci 39(6):1378–1380

    CAS  Google Scholar 

  • Kintzios S, Manos C, Makri O (1999) Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep 18:467–472

    Article  CAS  Google Scholar 

  • Korban SS (2007) Rose. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry transgenic crops VI, vol 61. Springer, Berlin, pp 227–239

  • Krishna Kumar G, Dennis Thomas T (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tiss Org Cult 110:141–151

    Article  CAS  Google Scholar 

  • Kucharska D, Orlikowska T (2009) Enhancement of in vitro organogenic capacity of rose by preculture of donor shoots on the medium with thidiazuron. Acta Physiol Plant 31:495–500

    Article  CAS  Google Scholar 

  • Kunitake H, Imamizo H, Mii M (1993) Somatic embryogenesis and plant regeneration from immature seed-derived calli of rose (Rosa rugosa Thunb). Plant Sci 90:187–194

    Article  CAS  Google Scholar 

  • Li X, Krasnyanski S, Korban SS (2002) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319

    Article  CAS  Google Scholar 

  • Lloyd D, Roberts AV, Short KC (1998) The induction in vitro of adventitious shoots in Rosa. Euphytica 37:31–36

    Article  Google Scholar 

  • Magyar-Tábori K, Dobránszki J, da Teixeira Silva JA, Bulley SM, Hudák I (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tiss Org Cult 101:251–267

    Article  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in floribunda rose (Rosa hybrida L.) cvs trumpeter and glad tidings. Plant Sci 120:95–105

    Article  Google Scholar 

  • Matthews D, Mottley J, Horan I, Roberts AV (1991) A protoplast to plant system in roses. Plant Cell Tiss Org Cult 24:173–180

    Article  Google Scholar 

  • Murali S, Sreedhar D, Lokeswari TS (1996) Regeneration through somatic embryogenesis from petal-derived calli of Rosa hybrida L. cv. Arizona (hybrid tea). Euphytica 91:271–275

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch JS, Saxena PK (1998) Thidiazuron: a potent regulators of in vitro plant morphogenesis in vitro cell. Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Noriega C, Sondahl MR (1991) Somatic embryogenesis in hybrid tea roses. Biotechnology 9:991–993

    Article  Google Scholar 

  • Pati PK, Sharma M, Sood A, Ahuja PS (2004) Direct shoot regeneration from leaf explants of R. damascena mill. In Vitro Cell Dev Biol Plant 40(2):192–195

    Article  Google Scholar 

  • Pati PK, Rath SP, Sharma MM, Sood A, Ahuja PS (2006) In vitro propagation of rose—a review. Biotechnol Adv 24:94–114

    Article  PubMed  CAS  Google Scholar 

  • Roberts AV, Horan I, Matthews D, Mottley J (1990) Protoplast technology and somatic embryogenesis in Rosa. In: de Jong J (ed) Integration of the in vitro techniques in ornamental plant breeding. CPO Centre for Plant Breeding Research, Wageningen, The Netherlands, pp 100–115

    Google Scholar 

  • Roberts AV, Yokoya K, Walker S, Mottley J (1995) Somatic embryogenesis in Rosa spp. In: Jain SM, Gupta PK, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer, The Netherlands, pp 277–289

    Chapter  Google Scholar 

  • Rosu A, Skirvin RM, Bein A, Norton MA, Kushad M (1995) The development of putative adventitious shoots from a chimeral thornless rose (Rosa multiflora Thunb. ex J. Murr.) in vitro. J Hortic Sci 70:901–907

    Google Scholar 

  • Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus culture of Rosa hybrida L. cv landora. Plant Cell Tiss Org Cult 27:65–69

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Mottey J, Das P (1999) Biotechnology of the rose: a review of recent progress. Sci Hortic 81:201–228

    Article  CAS  Google Scholar 

  • Sarasan V, Roberts AV, Rout GR (2001) Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep 20:183–186

    Article  CAS  Google Scholar 

  • Schum A, Hofmann K, Ghalib N, Tawfik A (2001) Factors affecting protoplast isolation and plant regeneration in Rosa spp. Gartenbauwiss 66:115–122

    CAS  Google Scholar 

  • Shabannezhad Mamaghani M, Asareh MH, Omidi M, Ghamari Zare A, Shahrzad SH (2008) Comparison of direct and indirect regeneration in Eucalyptus Microtheca M. Iranian Rangel Forest Plant Breed Genet Res 16(2):229–237

    Google Scholar 

  • Shirini S, Mahdavi F, Maziah M (2009) Morphological abnormality among regenerated shoots of banana and plantain (Musa spp.) after in vitro multiplication with TDZ and BA from excised shoot tips. Afr J Biotechnol 8(21):5755–5761

    Google Scholar 

  • Tian C, Chen Y, Zhao X (2008) Plant regeneration through protocorm-like bodies induced from rhizoids using leaf explants of Rosa spp. Plant Cell Rep 27:823–831

    Article  PubMed  CAS  Google Scholar 

  • van der Salm TPM, van der Toorn CJG, Ten Cate Hanisch CH, Dubois LAM, de Vries DP, Dons HJM (1996) Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida L., moneyway. Plant Cell Rep 15:522–526

    Article  Google Scholar 

  • Vergne P, Maene M, Chauvet A, Debener T, Bendahmane M (2010) Versatile somatic embryogenesis systems and transformation methods for the diploid rose genotype Rosa chinensis cv. Old blush. Plant Cell Tiss Organ Cult 100:73–81

    Article  Google Scholar 

  • Visessuwan R, Kawai T, Mii M (1997) Plant regeneration systems from leaf segment culture through embryogenic callus formation of Rosa hybrida and R. canina. Breed Sci 47:217–222

    CAS  Google Scholar 

  • Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of thidiazuron. Plant Physiol 99:1704–1707

    Article  PubMed  CAS  Google Scholar 

  • Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts in roses. Ann Bot 85:557–561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of a PhD thesis on “Study of gene transformation and regeneration in roses” in Science and Research Branch, Islamic Azad University, funded by Agricultural Biotechnology Research Institute of Iran (ABRII) (Project number: 12-05-05-01-8704-88003). Authors wish to thank Prof A. V. Roberts from University of East London, UK, for his constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Jafarkhani Kermani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourhosseini, L., Kermani, M.J., Habashi, A.A. et al. Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida . Plant Cell Tiss Organ Cult 112, 101–108 (2013). https://doi.org/10.1007/s11240-012-0210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0210-1

Keywords

Navigation