Skip to main content
Log in

High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient plant regeneration protocol has been developed from embryogenic callus derived from cotyledonary explants of Clitoria ternatea Linn., an important medicinal climber species. Optimum embryogenic callus (75 %) was induced on Murashige and Skoog (MS) medium supplemented with 2 mg/l 2, 4-dichlorophenoxyacetic acid (2, 4-D). On subculturing the callus on MS medium supplemented with 2 mg/l 6-benzyladenine (BA) and 0.5 mg/l α-naphthalene acetic acid (NAA), 61 % of cultures responded with a mean number of 22 somatic embryos per gram callus at different stages of development after 45 days of culture. The addition of higher concentrations of sucrose and abscisic acid (ABA) significantly increased the embryogenic response. MS medium supplemented with 2 mg/l BA, 0.2 mg/l NAA and 4 % of sucrose resulted in 76 % of cultures responding with a mean number of 28 embryos per one gram callus. The highest embryogenic response, frequency of 83 % and mean number of 37 embryos per gram callus, was observed when the MS medium was supplemented with 2 mg/l BA, 0.2 mg/l NAA, and 3 mg/l ABA. Synthetic seeds were produced by encapsulating embryos in calcium alginate gel. The gel contained MS medium with 3 % of sucrose, 1.0 mg/l BA and 0.2 mg/l NAA. The synthetic seeds germinated on MS medium supplemented with BA (1.0-4.0 mg/l) alone or in combination with NAA (0.1–0.7 mg/l) or indole-3-butyric acid (IBA; 0.1–0.7 mg/l). The highest synthetic seed germination (92  %) was observed on MS medium supplemented with 2 mg/l BA and 0.5 mg/l NAA. The synthetic seeds were stored at 4 °C and lab conditions (25 ± 2 °C) up to 5 months. The synthetic seeds kept at 4 °C showed 86 % viability even after 5 months of storage. Both somatic embryos and synthetic seeds germinated and were transferred to soil successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

BA:

6-benzyladenine

Kn:

Kinetin

MS:

Murashige and Skoog

NAA:

α-naphthalene acetic acid

IBA:

Indole-3-butyric acid

References

  • Anonymous (1988) The wealth of India: a dictionary of Indian raw materials and industrial products, vol. II. New Delhi: Publication and Information Directorate. CSIR, India, pp 608–643

  • Anthony JM, Senaratna T, Dixon T, Sivasithamparam K (2004) Somatic embryogenesis for mass propagation of Ericaceae: a case study with Leucopogon verticillatus. Plant Cell Tiss Org Cult 76:137–146

    Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Org Cult 35:1–35

    Article  CAS  Google Scholar 

  • Banerjee SK, Chakravarti RN (1963) Taraxerol from Clitoria ternatea. Bull Calcutta School Trop Med 11:106–107

    CAS  Google Scholar 

  • Banerjee SK, Chakravarti RN (1964) Taraxerone from Clitoria ternatea. Bull Calcutta School Trop Med 12:23

    Google Scholar 

  • Barik DP, Naik SK, Mudgal A, Chand PK (2007) Rapid plant regeneration through in vitro axillary shoot proliferation of butterfly pea (Clitoria ternatea L.): a twinning legume. In Vitro Cell Dev Biol Plant 43:144–148

    Article  Google Scholar 

  • Baskaran P, Van Staden J (2012) Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta. Plant Cell Tiss Organ Cult doi:10.1007/s11240-012-0118-9

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition. Elsevier, Amsterdam, pp 1–766

    Google Scholar 

  • Cangahuala-Inocente GC, Vesco LLD, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Hort 111:228–234

    Article  CAS  Google Scholar 

  • Cardosa JC, Martinelli AP, Latado RR (2012) Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-011-0073-x

    Google Scholar 

  • Castillo B, Smith MA, Yadava UL (1988) Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep 17:172–176

    Article  Google Scholar 

  • Cruz GS, Canhoto JM, Abreu MAV (1990) Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Sci 66:263–270

    Article  CAS  Google Scholar 

  • DeWald SG, Litz RE, Moore GA (1989) Optimizing somatic embryo production in mango. J Am Soc Hortic Sci 114:837–841

    Google Scholar 

  • Dhanalakshmi S, Lakshmanan KK (1992) In vitro somatic embryogenesis and plant regeneration in Clitoria ternatea. J Exp Bot 43:213–219

    Article  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Google Scholar 

  • Fei SZ, Riordan T, Read P (2002) Stepwise decrease of 2, 4-D and addition of BA in subculture medium stimulated shoot regeneration and somatic embryogenesis in buffalo grass. Plant Cell Tiss Organ Cult 70:275–279

    Article  CAS  Google Scholar 

  • Ganapathi TR, Srinivas L, Suprasanna P, Bapat VA (2001) Regeneration of plants from alginate-encapsulated somatic embryos of banana cv. Rasthali (Musa spp. AAB group). In Vitro Cell Dev Biol Plant 37:178–181

    Article  CAS  Google Scholar 

  • George EF, Sherrington PD (1984) In vitro Plant propagation by tissue culture. Eversley, Exegetics Ltd, England, pp 39–71

    Google Scholar 

  • Gerdakaneh M, Mozafari AA, Khalighi A, Sioseh-mardah A (2009) The Effects of carbohydrate source and concentration on somatic embryogenesis of strawberry (Fragaria x ananassa Duch.). Am-Eurasian J Agric Environ Sci 6:76–80

    CAS  Google Scholar 

  • Groll J, Gray VM, Mycock DJ (2002) Development of Cassava (Manihot esculenta Crantz.) somatic embryos during culture with abscisic acid and activated charcoal. J Plant Physiol 159:437–443

    Article  CAS  Google Scholar 

  • Huda AKMN, Bari MA, Rahman M (2009) Asexual propagation of eggplant (Solanum melongena L.) through encapsulated axillary buds. Plant Tissue Cult Biotech 19:263–288

    Google Scholar 

  • Jain NN, Ohal CC, Shroff SK, Bhutada RH, Somani RS, Kasture VS, Kasture SB (2003) Clitoria ternatea and the CNS. Pharmac Biochem Behav 75:529–536

    Article  CAS  Google Scholar 

  • Jang DS, Cuendet M, Pawlus AD, Kardono LB, Kawanishi K, Farnsworth NR, Fong HH, Pezzuto JM, Kinghorn AD (2004) Potential cancer chemopreventive constituents of the leaves of Macaranga triloba. Phytochem 65:345–350

    Article  CAS  Google Scholar 

  • Karami O, Deljou A, Esna-ashari M, Ostat-ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hort 110:340–344

    Article  CAS  Google Scholar 

  • Kitto SL, Janick J (1982) Polyox as an artificial seed coat for a sexual embryos. Hort Sci 17:448

    Google Scholar 

  • Kong DM, Preece JE, Shen HL (2012) Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.). Plant Cell Tiss Organ Cult 108:485–492

    Article  Google Scholar 

  • Kulkarni C, Pattanshetty JR, Amruthraj G (1988) Effect of alcoholic extract of Clitoria ternatea Linn. On central nervous system in rodents. Ind J Exp Biol 26:957–960

    CAS  Google Scholar 

  • Lecouteux C, Lai FM, McKersie BD (1993) Maturation of alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress. Plant Sci 94:207–213

    Article  CAS  Google Scholar 

  • Lee JH, Lee KT, Yang JH, Baek NI, Kim DK (2004) Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel. Arch Pharm Res 27:53–56

    Article  PubMed  CAS  Google Scholar 

  • Lin LC, Chou CJ, Kuo YC (2001) Cytotoxic principles from Ventilago leiocarpa. J Nat Prod 64:674–676

    Article  PubMed  CAS  Google Scholar 

  • Linossier L, Veisseire P, Cailloux F, Coudret A (1997) Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124:183–191

    Article  CAS  Google Scholar 

  • Litz RE (1988) Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend. J Plant Physiol 132:190–193

    Article  CAS  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotech 11:416–425

    Article  Google Scholar 

  • Malabadi RB, Nataraja K (2001) Shoot regeneration of leaf explant of Clitoria ternatea L. cultured in vitro. Phytomorp 51:169–171

    Google Scholar 

  • Mathur J, Ahuja PS, Lal N, Mathur AK (1989) Propagation of Valeriana wallichii DC using encapsulated apical and axial shoot buds. Plant Sci 60:111–116

    Article  Google Scholar 

  • Michael Gomez SM, Kalamani A (2003) Butterfly pea (Clitoria ternatea L.): a nutritive multipurpose forage legume for the tropics: an overview. Pak J Nutr 2:374–379

    Article  Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (2002) Factors affecting germination and conversion frequency of somatic embryos of Tea (Camellia sinensis (L.) O. Kuntze. J Plant Physiol 159:1317–1321

    Article  CAS  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hort 78:17

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naik DG, Mujumdar AM, Waghole RJ, Misar AV, Bligh SW, Bashall A, Crowder J (2004) Taraxer-14-en-3beta-ol, an anti-inflammatory compound from Sterculia foetida L. Planta Med 70:68–69

    Article  PubMed  CAS  Google Scholar 

  • Nuno-Ayala A, Rodriguez-Garay B, Gutierrez-Mora A (2012) Somatic embryogenesis in Jarilla hetrophylla (Caricaceae). Plant Cell Tiss Organ Cult. doi:10.1007/s11240-011-0070-0

    Google Scholar 

  • Nyende AB, Schittenhelm S, Mix-Wagner G, Greef JM (2003) Production, storability and regeneration of shoot tips of potato (Solanum tuberosum L.) encapsulated in calcium alginate hollow beads. In Vitro Cell Dev Biol Plant 39:540–544

    Article  Google Scholar 

  • Nyende AB, Schittenhelm S, Mix-Wagner G, Greef JM (2005) Yield and canopy development of field grown potato plants derived from synthetic seeds. Europ J Agron 22:175–184

    Article  Google Scholar 

  • Panday NK, Tewari KC, Tewari RN, Joshi GC, Pande VN, Pandey G (1993) Medicinal plants of Kumaon Himalaya: strategies for conservation. In: Dhar U (ed) Himalayan biodiversity conservation strategies, no. 3. Nanital, Himavikas Publications, India, pp 293–302

    Google Scholar 

  • Parimaladevi B, Boominathan R, Mandal SC (2003) Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root. Fitoterapia 74:345–349

    Article  Google Scholar 

  • Pattnaik S, Chand PK (2000) Morphogenic response of the alginate-encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tiss Organ Cult 60:177–185

    Article  Google Scholar 

  • Rai KS, Murthy KD, Karanth KS, Rao MS (2001) Clitoria ternatea Linn. root extract treatment during growth spurt period enhances learning and memory in rats. Ind J Physiol Pharmac 45:305–313

    CAS  Google Scholar 

  • Rai KS, Murthy KD, Karanth KS, Nalini K, Rao MS, Srinivasan KK (2002) Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia 73:685–689

    Article  PubMed  CAS  Google Scholar 

  • Ratanasanobon K, Seaton KA (2010) Development of in vitro plant regenertion of Australian native waxflowers (Chamelaucium spp.) via somatic embryogenesis. Plant Cell Tiss Organ Cult 100:59–64

    Article  Google Scholar 

  • Ricci AP, Filho FAM, Januzzi BM, Piedade SMS (2002) Somatic embryogenesis in Citrus sinensis, C. reticulate and C. nobilis × C. deliciosa. Sci Agricol 59:41–46

    Article  Google Scholar 

  • Rout GR (2005) Micropropagation of Clitoria ternatea Linn. (Fabaceae)—an important medicinal plant. In Vitro Cell Dev Biol Plant 41:516–519

    Article  Google Scholar 

  • Sahrawat AK, Chand S (2001) Continuous somatic embryogenesis and plant regeneration from hypocotyl segments of Psoralea corylifolia Linn., an endangered and medicinally important Fabaceae plant. Curr Sci 81:1328–1331

    CAS  Google Scholar 

  • Shahana S, Gupta SC (2002) Somatic embryogenesis in Sesbania sesban var. bicolor: A multipurpose fabaceous woody species. Plant Cell Tiss Organ Cult 69:289–292

    Article  CAS  Google Scholar 

  • Shahzad A, Faisal M, Anis M (2007) Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro–regenerated plants and seedlings. Ann Appl Biol 150:341–349

    Article  CAS  Google Scholar 

  • Sharma RK, Bhagwan D (1988) Agnivesa’s Caraka Samhita, vol. 3: Chaukhambha Orientalia. Varanasi, India, p 46

    Google Scholar 

  • Shirin F, Hossain M, Kabir MF, Roy M, Sarker SR (2007) Callus induction and plant regeneration from internodal and leaf explants of four potato (Solanum tuberosum L.) cultivers. World J Agri Sci 3:1–6

    Google Scholar 

  • Shu Y, Ying-Cai Y, Hong-Hui L (2005) Plant regeneration through somatic embryogenesis from callus cultures of Dioscorea zingiberensis. Plant Cell Tiss Organ Cult 80:157–161

    Article  CAS  Google Scholar 

  • Singh J, Tiwari KN (2012) In vitro plant regeneration from decapitated embryonic axes of Clitoria ternatea L: an important medicinal plant. Ind Crops Prod 35:224–229

    Article  CAS  Google Scholar 

  • Singh S, Tanwer BS, Khan M (2011) Callus induction and in vivo and in vitro comparative study of primary metabolites of Withania Somnifera. Adv App Sci Res 2:47–52

    CAS  Google Scholar 

  • Sivanesan I, Lim MY, Jeong BR (2011) Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata Lam. var. rubriflora Makino. Plant Cell Tiss Organ Cult 107:365–369

    Article  Google Scholar 

  • Sivarajan VV, Balachandran I (1994) Ayurvedic drugs and their plant sources. Vol. 97. Oxford IBH, New Delhi, pp 289–290

    Google Scholar 

  • Skirvin RM, Norton M, McPheeters KD (1993) Somaclonal variation: has it proved useful for plant improvement. Acta Hort 336:333–340

    Google Scholar 

  • Song GQ, Loskutov AV, Sink KC (2007) Highly efficient Agrobacterium tumefaciens mediated transformation of celery (Apium graveolens L.) through somatic embryogenesis. Plant Cell Tiss Organ Cult 88:193–200

    Article  CAS  Google Scholar 

  • Takasaki M, Konoshima T, Tokuda H, Masuda K, Arai Y, Shiojima K, Ageta H (1999) Anti-carcinogenic activity of Taraxacum plant. II. Biol Pharm Bull 22:606–610

    Article  PubMed  CAS  Google Scholar 

  • Taranalli AD, Cheeramkuzhy TC (2003) Influence of Clitoria ternatea extracts on memory and cerebro cholinergic activity in rats. Pharm Biol 38:51–56

    Google Scholar 

  • Tetteroo FAA, Hoekstra FA, Karssen CM (1995) Induction of complete desiccation tolerance in carrot (Daucus carota) embryoids. J Plant Physiol 145:349–356

    Article  CAS  Google Scholar 

  • Thorpe TA, Harry IS, Kumar PP (1991) Application of micropropagation to forestry. In: Debergh PC, Zimmerman RH (eds) Micropropagation technology and application. Kluwer Academic Publishers, Dordrecht, pp 311–336

    Google Scholar 

  • Wani M, Pande S, More N (2010) Callus induction studies in Tridax procumbens L. Int J Biotechnol App 2:11–14

    Google Scholar 

  • Wu HC, Toit ESD, Reinhardt EF (2007) A protocol for direct somatic embryogenesis of Protea cynaroides L. using zygotic embryos and cotyledon tissues. Plant Cell Tiss Organ Cult 89:217–224

    Article  Google Scholar 

  • Yang JL, Seong ES, Kim MJ, Ghimire BK, Kang WH, Yu CY, Li CH (2010) Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea var. italica) root explants. Plant Cell Tiss Organ Cult 100:49–58

    Article  Google Scholar 

  • Yoganarasimhan SN (2000) Medicinal plants of India. Vol. 2. Interline Publishing Co, Bangalore, pp 146–147

    Google Scholar 

  • Zhou S, Brown DCW (2006) High efficiency plant production of North American ginseng via somatic embryogenesis from cotyledon explants. Plant Cell Rep 25:166–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Principal for providing with necessary laboratory facilities. TDT acknowledges the financial assistance from UGC, Government of India, in the form of a major research project (Project no. 38-233/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna Kumar, G., Thomas, T.D. High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tiss Organ Cult 110, 141–151 (2012). https://doi.org/10.1007/s11240-012-0138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0138-5

Keywords

Navigation