Skip to main content

Microbial Production of Amine Chemicals from Sustainable Substrates

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 228 Accesses

Abstract

With global population projected to be almost 10 billion people by 2050, the demand for food, chemicals and energy is expected to rise continuously. Nitrogen-containing (N-containing) compounds play a key role in many aspects of life and commercial processes, from the industrial production of fertilizers to the building blocks of life. Bio-based production of these N-containing compounds is gaining importance and replacing chemical synthesis approaches because of their economic and environmental advantages. Microbial synthesis often offers one-step fermentations and formation of less hazardous wastes as advantages compared to chemical synthesis. Moreover, microbial synthesis has additional benefits that include the use of renewable sources like side stream biomasses, adding environmental-friendly value to the bioprocesses. Many genetic engineering technologies have important impact in the field of metabolic engineering with microbial workhorses like the bacteria Escherichia coli or Corynebacterium glutamicum. The product spectrum of these production hosts has been expanded extensively to comprise valuable N-containing chemicals like amino acids, diamines, or lactams among others, which have great interest, for instance, as feed additives, as bioplastics precursors, or as molecules with relevant pharmacological activity.

This chapter summarizes the most recent advances in metabolic engineering of biotechnologically relevant microbial hosts to produce N-containing chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gröger H. Biocatalytic concepts for synthesizing amine bulk chemicals: recent approaches towards linear and cyclic aliphatic primary amines and ω-substituted derivatives thereof. Appl Microbiol Biotechnol. 2019;103:83–95. https://doi.org/10.1007/s00253-018-9452-0.

    Article  CAS  PubMed  Google Scholar 

  2. Willke T. Methionine production—a critical review. Appl Microbiol Biotechnol. 2014;98:9893–914. https://doi.org/10.1007/s00253-014-6156-y.

    Article  CAS  PubMed  Google Scholar 

  3. Joo Y-C, Hyeon JE, Han SO. Metabolic design of Corynebacterium glutamicum for production of l-cysteine with consideration of Sulfur-supplemented animal feed. J Agric Food Chem. 2017;65:4698–707. https://doi.org/10.1021/acs.jafc.7b01061.

    Article  CAS  PubMed  Google Scholar 

  4. Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng. 2020;58:17–34. https://doi.org/10.1016/j.ymben.2019.03.008.

    Article  CAS  PubMed  Google Scholar 

  5. Ma Q, Zhang Q, Xu Q, Zhang C, Li Y, Fan X, Xie X, Chen N. Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol. 2017;2:87–96. https://doi.org/10.1016/j.synbio.2017.07.003.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–41. https://doi.org/10.1016/j.ymben.2018.07.008.

    Article  CAS  PubMed  Google Scholar 

  7. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T. Altered metabolic flux due to deletion of odhA causes l-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol. 2007;73:1308–19. https://doi.org/10.1128/AEM.01867-06.

    Article  CAS  PubMed  Google Scholar 

  8. Wada M, Sawada K, Ogura K, Shimono Y, Hagiwara T, Sugimoto M, Onuki A, Yokota A. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032. J Biosci Bioeng. 2016;121:172–7. https://doi.org/10.1016/j.jbiosc.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang D, Guan D, Liang J, Guo C, Xie X, Zhang C, Xu Q, Chen N. Reducing lactate secretion by ldhA deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9. Braz J Microbiol. 2014;45:1477–83. https://doi.org/10.1590/S1517-83822014000400044.

    Article  CAS  PubMed  Google Scholar 

  10. Blombach B, Hans S, Bathe B, Eikmanns BJ. Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol. 2009;75:419–27. https://doi.org/10.1128/AEM.01844-08.

    Article  CAS  PubMed  Google Scholar 

  11. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011;13:159–68. https://doi.org/10.1016/j.ymben.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  12. Xu J-Z, Wu Z-H, Gao S-J, Zhang W. Rational modification of tricarboxylic acid cycle for improving l-lysine production in Corynebacterium glutamicum. Microb Cell Factories. 2018;17:105. https://doi.org/10.1186/s12934-018-0958-z.

    Article  CAS  Google Scholar 

  13. Ying H, He X, Li Y, Chen K, Ouyang P. Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Appl Biochem Biotechnol. 2014;172:3835–43. https://doi.org/10.1007/s12010-014-0820-7.

    Article  CAS  PubMed  Google Scholar 

  14. Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. Microb Physiol. 2009;16:198–207. https://doi.org/10.1159/000142530.

    Article  CAS  Google Scholar 

  15. Livshits VA, Zakataeva NP, Aleshin VV, Vitushkina MV. Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol. 2003;154:123–35. https://doi.org/10.1016/S0923-2508(03)00036-6.

    Article  CAS  PubMed  Google Scholar 

  16. Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol. 2007;3:149. https://doi.org/10.1038/msb4100196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Factories. 2009;8:2. https://doi.org/10.1186/1475-2859-8-2.

    Article  CAS  Google Scholar 

  18. Yin L, Shi F, Hu X, Chen C, Wang X. Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol. 2013;114:1369–77. https://doi.org/10.1111/jam.12141.

    Article  CAS  PubMed  Google Scholar 

  19. Vogt M, Krumbach K, Bang W-G, van Ooyen J, Noack S, Klein B, Bott M, Eggeling L. The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol. 2015;99:791–800. https://doi.org/10.1007/s00253-014-6109-5.

    Article  CAS  PubMed  Google Scholar 

  20. Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Biotechnol Appl Biochem. 2016;63:877–85. https://doi.org/10.1002/bab.1442.

    Article  CAS  PubMed  Google Scholar 

  21. Park JH, Oh JE, Lee KH, Kim JY, Lee SY. Rational design of Escherichia coli for L-isoleucine production. ACS Synth Biol. 2012;1:532–40. https://doi.org/10.1021/sb300071a.

    Article  CAS  PubMed  Google Scholar 

  22. Huang J-F, Liu Z-Q, Jin L-Q, Tang X-L, Shen Z-Y, Yin H-H, Zheng Y-G. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnol Bioeng. 2017;114:843–51. https://doi.org/10.1002/bit.26198.

    Article  CAS  PubMed  Google Scholar 

  23. Qin T, Hu X, Hu J, Wang X. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce l-methionine. Biotechnol Appl Biochem. 2015;62:563–73. https://doi.org/10.1002/bab.1290.

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek. 2016;109:1185–97. https://doi.org/10.1007/s10482-016-0719-0.

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda M, Katsumata R. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol. 1999;65:2497–502. https://doi.org/10.1128/AEM.65.6.2497-2502.1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu L, Duan X, Wu J. L-tryptophan production in Escherichia coli improved by weakening the Pta-AckA pathway. PLoS One. 2016;11:e0158200. https://doi.org/10.1371/journal.pone.0158200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chen L, Zeng A-P. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl Microbiol Biotechnol. 2017;101:559–68. https://doi.org/10.1007/s00253-016-7772-5.

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Liu Y, Ding D, Cong L, Zhang D. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. J Ind Microbiol Biotechnol. 2018;45:357–67. https://doi.org/10.1007/s10295-018-2020-x.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura J, Hirano S, Ito H, Wachi M. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production. Appl Environ Microbiol. 2007;73:4491–8. https://doi.org/10.1128/AEM.02446-06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nottebrock D, Meyer U, Krämer R, Morbach S. Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol Lett. 2003;218:305–9. https://doi.org/10.1111/j.1574-6968.2003.tb11533.x.

    Article  CAS  PubMed  Google Scholar 

  31. Niebisch A, Kabus A, Schultz C, Weil B, Bott M. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem. 2006;281:12300–7. https://doi.org/10.1074/jbc.M512515200.

    Article  CAS  PubMed  Google Scholar 

  32. Schultz C, Niebisch A, Gebel L, Bott M. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol. 2007;76:691–700. https://doi.org/10.1007/s00253-007-0933-9.

    Article  CAS  PubMed  Google Scholar 

  33. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2001;3:295–300.

    CAS  PubMed  Google Scholar 

  34. Ikeda M, Takeno S. Recent advances in amino acid production. In: Inui M, Toyoda K, editors. Corynebacterium glutamicum: biology and biotechnology. Cham: Springer International Publishing; 2020. p. 175–226. https://doi.org/10.1016/j.copbio.2016.04.017.

    Chapter  Google Scholar 

  35. Riedel C, Rittmann D, Dangel P, Möckel B, Petersen S, Sahm H, Eikmanns BJ. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol. 2001;3:573–83.

    CAS  PubMed  Google Scholar 

  36. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol. 2002;58:217–23. https://doi.org/10.1007/s00253-001-0883-6.

    Article  CAS  PubMed  Google Scholar 

  37. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012;109:2070–81. https://doi.org/10.1002/bit.24486.

    Article  CAS  PubMed  Google Scholar 

  38. Kind S, Becker J, Wittmann C. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway--metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng. 2013;15:184–95. https://doi.org/10.1016/j.ymben.2012.07.005.

    Article  CAS  PubMed  Google Scholar 

  39. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol. 1991;5:1197–204. https://doi.org/10.1111/j.1365-2958.1991.tb01893.x.

    Article  CAS  PubMed  Google Scholar 

  40. Georgi T, Rittmann D, Wendisch VF. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng. 2005;7:291–301. https://doi.org/10.1016/j.ymben.2005.05.001.

    Article  CAS  PubMed  Google Scholar 

  41. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase. J Biotechnol. 2007;132:99–109. https://doi.org/10.1016/j.jbiotec.2007.05.026.

    Article  CAS  PubMed  Google Scholar 

  42. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol. 2003;104:185–97. https://doi.org/10.1016/s0168-1656(03)00153-6.

    Article  CAS  PubMed  Google Scholar 

  43. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol. 2005;71:8587–96. https://doi.org/10.1128/AEM.71.12.8587-8596.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kabus A, Georgi T, Wendisch VF, Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol. 2007;75:47–53. https://doi.org/10.1007/s00253-006-0804-9.

    Article  CAS  PubMed  Google Scholar 

  45. Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol. 1991;34:617–22. https://doi.org/10.1007/BF00167910.

    Article  CAS  PubMed  Google Scholar 

  46. Vrljic M, Sahm H, Eggeling L. A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol. 1996;22:815–26. https://doi.org/10.1046/j.1365-2958.1996.01527.x.

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol. 2017;245:1588–602. https://doi.org/10.1016/j.biortech.2017.05.145.

    Article  CAS  PubMed  Google Scholar 

  48. Kocabaş P, Çalık P, Özdamar TH. Fermentation characteristics of l-tryptophan production by thermoacidophilic bacillus acidocaldarius in a defined medium. Enzym Microb Technol. 2006;39:1077–88. https://doi.org/10.1016/j.enzmictec.2006.02.012.

    Article  CAS  Google Scholar 

  49. Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins dos Santos V, Wendisch VF, Cankar K. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Factories. 2022;21:45. https://doi.org/10.1186/s12934-022-01771-y.

    Article  CAS  Google Scholar 

  50. Eggeling L, Bott M, Bott M. Handbook of Corynebacterium glutamicum. Boca Raton: CRC Press; 2005. https://doi.org/10.1201/9781420039696.

    Book  Google Scholar 

  51. Rodriguez A, Martnez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Factories. 2014;13:126. https://doi.org/10.1186/s12934-014-0126-z.

    Article  CAS  Google Scholar 

  52. Zhao Z-J, Zou C, Zhu Y-X, Dai J, Chen S, Wu D, Wu J, Chen J. Development of l-tryptophan production strains by defined genetic modification in Escherichia coli. J Ind Microbiol Biotechnol. 2011;38:1921–9. https://doi.org/10.1007/s10295-011-0978-8.

    Article  CAS  PubMed  Google Scholar 

  53. Xiong B, Zhu Y, Tian D, Jiang S, Fan X, Ma Q, Wu H, Xie X. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli. Biotechnol Bioeng. 2021;118:1393–404. https://doi.org/10.1002/bit.27665.

    Article  CAS  PubMed  Google Scholar 

  54. Ger Y-M, Chen S-L, Chiang H-J, Shiuan D. A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-D-arabino-Heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli1. J Biochem. 1994;116:986–90. https://doi.org/10.1093/oxfordjournals.jbchem.a124657.

    Article  CAS  PubMed  Google Scholar 

  55. Kikuchi Y, Tsujimoto K, Kurahashi O. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol. 1997;63:761–2. https://doi.org/10.1128/aem.63.2.761-762.1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Lee J-H, Wendisch VF. Production of amino acids - genetic and metabolic engineering approaches. Bioresour Technol. 2017;245:1575–87. https://doi.org/10.1016/j.biortech.2017.05.065.

    Article  CAS  PubMed  Google Scholar 

  57. Gu P, Yang F, Kang J, Wang Q, Qi Q. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microb Cell Factories. 2012;11:30. https://doi.org/10.1186/1475-2859-11-30.

    Article  CAS  Google Scholar 

  58. Gu P, Yang F, Li F, Liang Q, Qi Q. Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol. 2013;97:6677–83. https://doi.org/10.1007/s00253-013-4988-5.

    Article  CAS  PubMed  Google Scholar 

  59. Pérez-García F, Wendisch VF. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett. 2018;365:fny166. https://doi.org/10.1093/femsle/fny166.

    Article  CAS  Google Scholar 

  60. Nguyen AQD, Schneider J, Reddy GK, Wendisch VF. Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum. Meta. 2015;5:211–31. https://doi.org/10.3390/metabo5020211.

    Article  CAS  Google Scholar 

  61. Schneider J, Eberhardt D, Wendisch VF. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol. 2012;95:169–78. https://doi.org/10.1007/s00253-012-3956-9.

    Article  CAS  PubMed  Google Scholar 

  62. Qian Z-G, Xia X-X, Lee SY. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng. 2009;104:651–62. https://doi.org/10.1002/bit.22502.

    Article  CAS  PubMed  Google Scholar 

  63. Jorge JMP, Nguyen AQD, Pérez-García F, Kind S, Wendisch VF. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng. 2017;114:862–73. https://doi.org/10.1002/bit.26211.

    Article  CAS  PubMed  Google Scholar 

  64. Shi F, Luan M, Li Y. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express. 2018;8:61. https://doi.org/10.1186/s13568-018-0595-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Yu P, Chen K, Huang X, Wang X, Ren Q. Production of γ-aminobutyric acid in Escherichia coli by engineering MSG pathway. Prep Biochem Biotechnol. 2018;48:906–13. https://doi.org/10.1080/10826068.2018.1514519.

    Article  CAS  PubMed  Google Scholar 

  66. Chae TU, Ko Y-S, Hwang K-S, Lee SY. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab Eng. 2017;41:82–91. https://doi.org/10.1016/j.ymben.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  67. Chen J, Wang Y, Guo X, Rao D, Zhou W, Zheng P, Sun J, Ma Y. Efficient bioproduction of 5-Aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnol Biofuels. 2020;13:41. https://doi.org/10.1186/s13068-020-01685-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Shih I-T, Yi Y-C, Ng I-S. Plasmid-free system and modular design for efficient 5-Aminolevulinic acid production by engineered Escherichia coli. Appl Biochem Biotechnol. 2021;193:2858–71. https://doi.org/10.1007/s12010-021-03571-3.

    Article  CAS  PubMed  Google Scholar 

  69. Hagihara R, Ohno S, Hayashi M, Tabata K, Endo H. Production of l-theanine by Escherichia coli in the absence of supplemental ethylamine. Appl Environ Microbiol. 2021;87:e00031–21. https://doi.org/10.1128/AEM.00031-21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Benninghaus L, Walter T, Mindt M, Risse JM, Wendisch VF. Metabolic engineering of pseudomonas putida for fermentative production of l-theanine. J Agric Food Chem. 2021;69:9849–58. https://doi.org/10.1021/acs.jafc.1c03240.

    Article  CAS  PubMed  Google Scholar 

  71. Mindt M, Walter T, Risse JM, Wendisch VF. Fermentative production of N-Methylglutamate from glycerol by recombinant pseudomonas putida. Front Bioeng Biotechnol. 2018;6:159. https://doi.org/10.3389/fbioe.2018.00159.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Qian Z-G, Xia X-X, Lee SY. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng. 2011;108:93–103. https://doi.org/10.1002/bit.22918.

    Article  CAS  PubMed  Google Scholar 

  73. Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Von AG, Zelder O, Wittmann C. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng. 2014;25:113–23. https://doi.org/10.1016/j.ymben.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  74. Prell C, Vonderbank S-A, Meyer F, Pérez-García F, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum for de novo production of 3-hydroxycadaverine. Curr Res Biotechnol. 2022;4:32–46. https://doi.org/10.1016/j.crbiot.2021.12.004.

    Article  CAS  Google Scholar 

  75. Jorge JMP, Pérez-García F, Wendisch VF. A new metabolic route for the fermentative production of 5-Aminovalerate from glucose and alternative carbon sources. Bioresour Technol. 2017;245:1701–9. https://doi.org/10.1016/j.biortech.2017.04.108.

    Article  CAS  PubMed  Google Scholar 

  76. Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb Cell Factories. 2016;15:154. https://doi.org/10.1186/s12934-016-0553-0.

    Article  CAS  Google Scholar 

  77. Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb Cell Factories. 2016;15:174. https://doi.org/10.1186/s12934-016-0566-8.

    Article  CAS  Google Scholar 

  78. Pérez-García F, Max Risse J, Friehs K, Wendisch VF. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J. 2017;12:646. https://doi.org/10.1002/biot.201600646.

    Article  CAS  Google Scholar 

  79. Xu X, Rao Z-M, Xu J-Z, Zhang W-G. Enhancement of l-pipecolic acid production by dynamic control of substrates and multiple copies of the pipA gene in the Escherichia coli genome. ACS Synth Biol. 2022;11(2):760–9. https://doi.org/10.1021/acssynbio.1c00467.

    Article  CAS  PubMed  Google Scholar 

  80. Pérez-García F, Ziert C, Risse JM, Wendisch VF. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol. 2017;258:59–68. https://doi.org/10.1016/j.jbiotec.2017.04.039.

    Article  CAS  PubMed  Google Scholar 

  81. Gießelmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon EJ, Yim SS, Sommer F, Zimmer D, Mühlhaus T, Schroda M, Jeong KJ, Becker J, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnol J. 2019;14:e1800417. https://doi.org/10.1002/biot.201800417.

    Article  CAS  PubMed  Google Scholar 

  82. Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng. 2016;36:10–8. https://doi.org/10.1016/j.ymben.2016.02.013.

    Article  CAS  PubMed  Google Scholar 

  83. Ma Q, Xia L, Wu H, Zhuo M, Yang M, Zhang Y, Tan M, Zhao K, Sun Q, Xu Q, Chen N, Xie X. Metabolic engineering of Escherichia coli for efficient osmotic stress-free production of compatible solute hydroxyectoine. Biotechnol Bioeng. 2022;119:89–101. https://doi.org/10.1002/bit.27952.

    Article  CAS  PubMed  Google Scholar 

  84. Kugler P, Trumm M, Frese M, Wendisch VF. L-carnitine production through biosensor-guided construction of the neurospora crassa biosynthesis pathway in Escherichia coli. Front Bioeng Biotechnol. 2021;9:671321. https://doi.org/10.3389/fbioe.2021.671321.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Sun H, Zhao D, Xiong B, Zhang C, Bi C. Engineering Corynebacterium glutamicum for violacein hyper production. Microb Cell Factories. 2016;15:148. https://doi.org/10.1186/s12934-016-0545-0.

    Article  CAS  Google Scholar 

  86. Zhou Y, Fang M-Y, Li G, Zhang C, Xing X-H. Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(S) involved in violacein biosynthesis. Appl Biochem Biotechnol. 2018;186:909–16. https://doi.org/10.1007/s12010-018-2787-2.

    Article  CAS  PubMed  Google Scholar 

  87. Yang C, Jiang P, Xiao S, Zhang C, Lou K, Xing X-H. Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochem Eng J. 2011;57:55–62. https://doi.org/10.1016/j.bej.2011.08.008.

    Article  CAS  Google Scholar 

  88. Wang H, Liu W, Shi F, Huang L, Lian J, Qu L, Cai J, Xu Z. Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli. Metab Eng. 2018;48:279–87. https://doi.org/10.1016/j.ymben.2018.06.007.

    Article  CAS  PubMed  Google Scholar 

  89. Mora-Villalobos J-A, Zeng A-P. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli. J Biol Eng. 2018;12:3. https://doi.org/10.1186/s13036-018-0094-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Zhang Y, He Y, Zhang N, Gan J, Zhang S, Dong Z. Combining protein and metabolic engineering strategies for biosynthesis of melatonin in Escherichia coli. Microb Cell Factories. 2021;20:170. https://doi.org/10.1186/s12934-021-01662-8.

    Article  CAS  Google Scholar 

  91. Balderas-Hernández VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernández-Chávez G, Báez-Viveros JL, Martínez A, Bolívar F, Gosset G. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Factories. 2009;8:19. https://doi.org/10.1186/1475-2859-8-19.

    Article  CAS  Google Scholar 

  92. Luo ZW, Cho JS, Lee SY. Microbial production of methyl anthranilate, a grape flavor compound. Proc Natl Acad Sci U S A. 2019;116:10749–56. https://doi.org/10.1073/pnas.1903875116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Veldmann KH, Minges H, Sewald N, Lee J-H, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J Biotechnol. 2019;291:7–16. https://doi.org/10.1016/j.jbiotec.2018.12.008.

    Article  CAS  PubMed  Google Scholar 

  94. Veldmann KH, Dachwitz S, Risse JM, Lee J-H, Sewald N, Wendisch VF. Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front Bioeng Biotechnol. 2019;7:219. https://doi.org/10.3389/fbioe.2019.00219.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Lee J, Kim J, Song JE, Song W-S, Kim E-J, Kim Y-G, Jeong H-J, Kim HR, Choi K-Y, Kim B-G. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat Chem Biol. 2021;17:104–12. https://doi.org/10.1038/s41589-020-00684-4.

    Article  CAS  PubMed  Google Scholar 

  96. Kerbs A, Burgardt A, Veldmann KH, Schäffer T, Lee J-H, Wendisch VF. Fermentative Production of halogenated tryptophan derivatives with Corynebacterium glutamicum overexpressing tryptophanase or decarboxylase genes. Chem Bio Chem. 2022;23:e202200007. https://doi.org/10.1002/cbic.202200007.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang C, Li Y, Ma J, Liu Y, He J, Li Y, Zhu F, Meng J, Zhan J, Li Z, Zhao L, Ma Q, Fan X, Xu Q, Xie X, Chen N. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Metab Eng. 2018;49:287–98. https://doi.org/10.1016/j.ymben.2018.09.008.

    Article  CAS  PubMed  Google Scholar 

  98. Tan S, Shi F, Liu H, Yu X, Wei S, Fan Z, Li Y. Dynamic control of 4-Hydroxyisoleucine biosynthesis by modified l-isoleucine biosensor in recombinant Corynebacterium glutamicum. ACS Synth Biol. 2020;9:2378–89. https://doi.org/10.1021/acssynbio.0c00127.

    Article  CAS  PubMed  Google Scholar 

  99. Lammens TM, Le Nôtre J, Franssen MCR, Scott EL, Sanders JPM. Synthesis of biobased succinonitrile from glutamic acid and glutamine. ChemSusChem. 2011;4:785–91. https://doi.org/10.1002/cssc.201100030.

    Article  CAS  PubMed  Google Scholar 

  100. Roerdink E, Warnier JMM. Preparation and properties of high molar mass nylon-4,6: a new development in nylon polymers. Polymer. 1985;26:1582–8. https://doi.org/10.1016/0032-3861(85)90098-9.

    Article  CAS  Google Scholar 

  101. Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010;88:859–68. https://doi.org/10.1007/s00253-010-2778-x.

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen AQD, Schneider J, Wendisch VF. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol. 2015;201:75–85. https://doi.org/10.1016/j.jbiotec.2014.10.035.

    Article  CAS  PubMed  Google Scholar 

  103. Li Z, Shen Y-P, Jiang X-L, Feng L-S, Liu J-Z. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J Ind Microbiol Biotechnol. 2018;45:123–39. https://doi.org/10.1007/s10295-018-2003-y.

    Article  CAS  PubMed  Google Scholar 

  104. Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H. Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. Biofactors. 2006;26:201–8. https://doi.org/10.1002/biof.5520260305.

    Article  CAS  PubMed  Google Scholar 

  105. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Nutr. 2004;92:411–7. https://doi.org/10.1079/BJN20041221.

    Article  CAS  PubMed  Google Scholar 

  106. Tsuge Y, Matsuzawa H. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2021;37:49. https://doi.org/10.1007/s11274-021-03007-4.

    Article  CAS  PubMed  Google Scholar 

  107. Jorge JMP, Leggewie C, Wendisch VF. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids. 2016;48:2519–31. https://doi.org/10.1007/s00726-016-2272-6.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang R, Yang T, Rao Z, Sun H, Xu M, Zhang X, Xu Z, Yang S. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem. 2014;16:4190–7. https://doi.org/10.1039/C4GC00607K.

    Article  CAS  Google Scholar 

  109. Le Vo TD, Kim TW, Hong SH. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst Eng. 2012;35:645–50. https://doi.org/10.1007/s00449-011-0634-8.

    Article  CAS  PubMed  Google Scholar 

  110. Pham VD, Lee SH, Park SJ, Hong SH. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli. J Biotechnol. 2015;207:52–7. https://doi.org/10.1016/j.jbiotec.2015.04.028.

    Article  CAS  PubMed  Google Scholar 

  111. Huang J, Mei L, Wu H, Lin D. Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of lactobacillus brevis. World J Microbiol Biotechnol. 2007;23:865–71. https://doi.org/10.1007/s11274-006-9311-5.

    Article  CAS  Google Scholar 

  112. Li H, Qiu T, Huang G, Cao Y. Production of gamma-aminobutyric acid by lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Factories. 2010;9:85. https://doi.org/10.1186/1475-2859-9-85.

    Article  CAS  Google Scholar 

  113. Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-Aminolevulinic acid and vitamin B12. Biotechnol Adv. 2012;30:1533–42. https://doi.org/10.1016/j.biotechadv.2012.04.003.

    Article  CAS  PubMed  Google Scholar 

  114. Liu S, Zhang G, Li X, Zhang J. Microbial production and applications of 5-Aminolevulinic acid. Appl Microbiol Biotechnol. 2014;98:7349–57. https://doi.org/10.1007/s00253-014-5925-y.

    Article  CAS  PubMed  Google Scholar 

  115. Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-Aminolevulinic acid. Biotechnol Bioeng. 2016;113:1284–93. https://doi.org/10.1002/bit.25886.

    Article  CAS  PubMed  Google Scholar 

  116. Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzym Microb Technol. 2015;81:1–7. https://doi.org/10.1016/j.enzmictec.2015.07.004.

    Article  CAS  Google Scholar 

  117. Su T, Guo Q, Zheng Y, Liang Q, Wang Q, Qi Q. Fine-tuning of hemB using CRISPRi for increasing 5-Aminolevulinic acid production in Escherichia coli. Front Microbiol. 2019;10:1731. https://doi.org/10.3389/fmicb.2019.01731.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Ge F, Wen D, Ren Y, Chen G, He B, Li X, Li W. Downregulating of hemB via synthetic antisense RNAs for improving 5-Aminolevulinic acid production in Escherichia coli. 3 Biotech. 2021;11:230. https://doi.org/10.1007/s13205-021-02733-8.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Liu Z-W, Wu Z-J, Li H, Wang Y-X, Zhuang J. L-theanine content and related gene expression: novel insights into theanine biosynthesis and hydrolysis among different tea plant (Camellia sinensis L.) tissues and cultivars. Front. Plant Sci. 2017;8:498. https://doi.org/10.3389/fpls.2017.00498.

    Article  Google Scholar 

  120. Vuong QV, Bowyer MC, Roach PD. L-theanine: properties, synthesis and isolation from tea. J Sci Food Agric. 2011;91:1931–9. https://doi.org/10.1002/jsfa.4373.

    Article  CAS  PubMed  Google Scholar 

  121. Ma H, Fan X, Cai N, Zhang D, Zhao G, Wang T, Su R, Yuan M, Ma Q, Zhang C, Xu Q, Xie X, Chen N, Li Y. Efficient fermentative production of l-theanine by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2020;104:119–30. https://doi.org/10.1007/s00253-019-10255-w.

    Article  CAS  PubMed  Google Scholar 

  122. Gioia MLD, Leggio A, Malagrinò F, Romio E, Siciliano C, Liguori A. N-methylated α-amino acids and peptides: synthesis and biological activity. Mini-Rev Med Chem. 2016;16:683–90. https://doi.org/10.2174/1389557516666160322152457.

    Article  CAS  PubMed  Google Scholar 

  123. Damann FE, Carter DO. Human decomposition ecology and postmortem microbiology. In: Manual of forensic taphonomy. Boca Raton: CRC Press; 2013.

    Google Scholar 

  124. Mimitsuka T, Sawai H, Hatsu M, Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem. 2007;71:2130–5. https://doi.org/10.1271/bbb.60699.

    Article  CAS  PubMed  Google Scholar 

  125. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol. 2015;427:3389–406. https://doi.org/10.1016/j.jmb.2015.06.020.

    Article  CAS  PubMed  Google Scholar 

  126. Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines: essential factors for growth and survival. Planta. 2008;228:367–81. https://doi.org/10.1007/s00425-008-0772-7.

    Article  CAS  PubMed  Google Scholar 

  127. Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol. 2003;185:13–9. https://doi.org/10.1128/JB.185.1.13-19.2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Kind S, Wittmann C. Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol. 2011;91(5):1287–96. https://doi.org/10.1007/s00253-011-3457-2.

    Article  CAS  PubMed  Google Scholar 

  129. Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv. 2021;11:23922–42. https://doi.org/10.1039/D1RA02764F.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Kind S, Jeong WK, Schröder H, Wittmann C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng. 2010;12:341–51. https://doi.org/10.1016/j.ymben.2010.03.005.

    Article  CAS  PubMed  Google Scholar 

  131. Lubitz D, Jorge JMP, Pérez-García F, Taniguchi H, Wendisch VF. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100:8465–74. https://doi.org/10.1007/s00253-016-7695-1.

    Article  CAS  PubMed  Google Scholar 

  132. Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine–lysine antiporter. J Ind Microbiol Biotechnol. 2014;41:701–9. https://doi.org/10.1007/s10295-014-1409-4.

    Article  CAS  PubMed  Google Scholar 

  133. Kang S-B, Choi J-I. Production of cadaverine in recombinant Corynebacterium glutamicum overexpressing lysine decarboxylase (ldcC) and response regulator dr1558. Appl Biochem Biotechnol. 2022;194:1013–24. https://doi.org/10.1007/s12010-021-03685-8.

    Article  CAS  PubMed  Google Scholar 

  134. Adkins J, Jordan J, Nielsen DR. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol Bioeng. 2013;110:1726–34. https://doi.org/10.1002/bit.24828.

    Article  CAS  PubMed  Google Scholar 

  135. Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. Multiple and interconnected pathways for l-lysine catabolism in pseudomonas putida KT2440. J Bacteriol. 2005;187:7500–10. https://doi.org/10.1128/JB.187.21.7500-7510.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng. 2013;16:42–7. https://doi.org/10.1016/j.ymben.2012.11.011.

    Article  CAS  PubMed  Google Scholar 

  137. Li Z, Xu J, Jiang T, Ge Y, Liu P, Zhang M, Su Z, Gao C, Ma C, Xu P. Overexpression of transport proteins improves the production of 5-aminovalerate from L-lysine in Escherichia coli. Sci Rep. 2016;6:30884. https://doi.org/10.1038/srep30884.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Pérez-García F, Peters-Wendisch P, Wendisch VF. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl Microbiol Biotechnol. 2016;100:8075–90. https://doi.org/10.1007/s00253-016-7682-6.

    Article  CAS  PubMed  Google Scholar 

  139. Fujii T, Aritoku Y, Agematu H, Tsunekawa H. Increase in the rate of L-pipecolic acid production using lat-expressing Escherichia coli by lysP and yeiE amplification. Biosci Biotechnol Biochem. 2002;66:1981–4. https://doi.org/10.1271/bbb.66.1981.

    Article  CAS  PubMed  Google Scholar 

  140. Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic acid orchestrates plant systemic acquired resistance and Defense priming via salicylic acid-dependent and -independent pathways. Plant Cell. 2016;28:102–29. https://doi.org/10.1105/tpc.15.00496.

    Article  CAS  PubMed  Google Scholar 

  141. Návarová H, Bernsdorff F, Döring A-C, Zeier J. Pipecolic acid, an endogenous mediator of Defense amplification and priming, is a critical regulator of inducible plant immunity[W]. Plant Cell. 2012;24:5123–41. https://doi.org/10.1105/tpc.112.103564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Misono H, Hashimoto H, Uehigashi H, Nagata S, Nagasaki S. Properties of L-lysine ε-dehydrogenase from agrobacterium tumefaciens. J Biochem. 1989;105:1002–8. https://doi.org/10.1093/oxfordjournals.jbchem.a122757.

    Article  CAS  PubMed  Google Scholar 

  143. Gouesbet G, Jebbar M, Talibart R, Bernard T, Blanco C. Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP. Microbiol Read Engl. 1994;140(Pt 9):2415–22. https://doi.org/10.1099/13500872-140-9-2415.

    Article  CAS  Google Scholar 

  144. Pérez-García F, Brito LF, Wendisch VF. Function of L-pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Front Microbiol. 2019;10:340. https://doi.org/10.3389/fmicb.2019.00340.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Kadouri-Puchot C, Comesse S. Recent advances in asymmetric synthesis of pipecolic acid and derivatives. Amino Acids. 2005;29:101–30. https://doi.org/10.1007/s00726-005-0193-x.

    Article  CAS  PubMed  Google Scholar 

  146. Eichhorn E, Roduit J-P, Shaw N, Heinzmann K, Kiener A. Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells. Tetrahedron Asymmetry. 1997;8:2533–6. https://doi.org/10.1016/S0957-4166(97)00256-5.

    Article  CAS  Google Scholar 

  147. Gupta RN, Spenser ID. Biosynthesis of the piperidine nucleus: the mode of incorporation of lysine into pipecolic acid and into piperidine alkaloids. J Biol Chem. 1969;244:88–94. https://doi.org/10.1016/S0021-9258(19)78195-2.

    Article  CAS  PubMed  Google Scholar 

  148. Miller DL, Rodwell VW. Metabolism of basic amino acids in pseudomonas putida: catabolism of lysine by cyclic and acyclic intermediates. J Biol Chem. 1971;246:2758–64. https://doi.org/10.1016/S0021-9258(18)62249-5.

    Article  CAS  PubMed  Google Scholar 

  149. Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, Ouyang P. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli. Microb Cell Factories. 2017;16:52. https://doi.org/10.1186/s12934-017-0666-0.

    Article  CAS  Google Scholar 

  150. Cánovas D, Vargas C, Calderón MI, Ventosa A, Nieto JJ. Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol. 1998;21:487–97. https://doi.org/10.1016/S0723-2020(98)80060-X.

    Article  PubMed  Google Scholar 

  151. Louis P, Galinski EA. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiol Read Engl. 1997;143(Pt 4):1141–9. https://doi.org/10.1099/00221287-143-4-1141.

    Article  CAS  Google Scholar 

  152. Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol. 2008;26:326–33. https://doi.org/10.1016/j.clindermatol.2008.01.002.

    Article  PubMed  Google Scholar 

  153. Botta C, Di Giorgio C, Sabatier A-S, De Méo M. Genotoxicity of visible light (400-800 nm) and photoprotection assessment of ectoin, L-ergothioneine and mannitol and four sunscreens. J Photochem Photobiol B. 2008;91:24–34. https://doi.org/10.1016/j.jphotobiol.2008.01.008.

    Article  CAS  PubMed  Google Scholar 

  154. Lo C-C, Bonner CA, Xie G, D’Souza M, Jensen RA. Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev. 2009;73:594–651. https://doi.org/10.1128/MMBR.00024-09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. García-Estepa R, Argandoña M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for Thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol. 2006;188:3774–84. https://doi.org/10.1128/JB.00136-06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998;57:306–13.

    Article  CAS  PubMed  Google Scholar 

  157. Becker J, Schäfer R, Kohlstedt M, Harder BJ, Borchert NS, Stöveken N, Bremer E, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Factories. 2013;12:110. https://doi.org/10.1186/1475-2859-12-110.

    Article  CAS  Google Scholar 

  158. Bestvater T, Louis P, Galinski EA. Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck. Saline Syst. 2008;4:12. https://doi.org/10.1186/1746-1448-4-12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Seip B, Galinski EA, Kurz M. Natural and engineered hydroxyectoine production based on the pseudomonas stutzeri ectABCD-ask gene cluster. Appl Environ Microbiol. 2011;77:1368–74. https://doi.org/10.1128/AEM.02124-10.

    Article  CAS  PubMed  Google Scholar 

  160. Kugler P, Fröhlich D, Wendisch VF. Development of a biosensor for Crotonobetaine-CoA ligase screening based on the elucidation of Escherichia coli carnitine metabolism. ACS Synth Biol. 2020;9:2460–71. https://doi.org/10.1021/acssynbio.0c00234.

    Article  CAS  PubMed  Google Scholar 

  161. Ahmed A, Ahmad A, Li R, Al-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z. Recent advances in synthetic, industrial and biological applications of violacein and its heterologous production. J Microbiol Biotechnol. 2021;31:1465–80. https://doi.org/10.4014/jmb.2107.07045.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Xu D, Fang M, Wang H, Huang L, Xu Q, Xu Z. Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway. Appl Microbiol Biotechnol. 2020;104:2481–8. https://doi.org/10.1007/s00253-020-10371-y.

    Article  CAS  PubMed  Google Scholar 

  163. Ferrer L, Elsaraf M, Mindt M, Wendisch VF. L-serine biosensor-controlled fermentative production of l-tryptophan derivatives by Corynebacterium glutamicum. Biology. 2022;11:744. https://doi.org/10.3390/biology11050744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31:187–99. https://doi.org/10.1111/j.1365-2885.2008.00944.x.

    Article  CAS  PubMed  Google Scholar 

  165. Park S, Kang K, Lee SW, Ahn M-J, Bae J-M, Back K. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Appl Microbiol Biotechnol. 2011;89:1387–94. https://doi.org/10.1007/s00253-010-2994-4.

    Article  CAS  PubMed  Google Scholar 

  166. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol. 2019;10:249. https://doi.org/10.3389/fendo.2019.00249.

    Article  Google Scholar 

  167. Byeon Y, Back K. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase. Appl Microbiol Biotechnol. 2016;100:6683–91. https://doi.org/10.1007/s00253-016-7458-z.

    Article  CAS  PubMed  Google Scholar 

  168. Kuepper J, Dickler J, Biggel M, Behnken S, Jäger G, Wierckx N, Blank LM. Metabolic engineering of pseudomonas putida KT2440 to produce anthranilate from glucose. Front Microbiol. 2015;6:1310. https://doi.org/10.3389/fmicb.2015.01310.

    Article  PubMed Central  PubMed  Google Scholar 

  169. Walter T, Al Medani N, Burgardt A, Cankar K, Ferrer L, Kerbs A, Lee J-H, Mindt M, Risse JM, Wendisch VF. Fermentative N-Methylanthranilate production by engineered Corynebacterium glutamicum. Microorganisms. 2020;8:866. https://doi.org/10.3390/microorganisms8060866.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Syukur Purwanto H, Kang M-S, Ferrer L, Han S-S, Lee J-Y, Kim H-S, Lee J-H. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J Biotechnol. 2018;282:92–100. https://doi.org/10.1016/j.jbiotec.2018.07.016.

    Article  CAS  PubMed  Google Scholar 

  171. Smirnov SV, Kodera T, Samsonova NN, Kotlyarovа VА, Rushkevich NY, Kivero АD, Sokolov PM, Hibi M, Ogawa J, Shimizu S. Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine. Appl Microbiol Biotechnol. 2010;88:719–26. https://doi.org/10.1007/s00253-010-2772-3.

    Article  CAS  PubMed  Google Scholar 

  172. Zhang C, Ma J, Li Z, Liang Y, Xu Q, Xie X, Chen N. A strategy for L-isoleucine dioxygenase screening and 4-hydroxyisoleucine production by resting cells. Bioengineered. 2017;9:72–9. https://doi.org/10.1080/21655979.2017.1304872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, pseudomonas, bacillus and yeast strains for access to alternative carbon sources. J Biotechnol. 2016;234:139–57. https://doi.org/10.1016/j.jbiotec.2016.07.022.

    Article  CAS  PubMed  Google Scholar 

  174. Wendisch VF, Nampoothiri KM, Lee J-H. Metabolic engineering for valorization of agri- and aqua-culture Sidestreams for production of nitrogenous compounds by Corynebacterium glutamicum. Front Microbiol. 2022;13:835131. https://doi.org/10.3389/fmicb.2022.835131.

    Article  PubMed Central  PubMed  Google Scholar 

  175. Wendisch VF, Kosec G, Heux S, Brautaset T. Aerobic utilization of methanol for microbial growth and production. Berlin: Springer; 2021. p. 1–44. https://doi.org/10.1007/10_2021_177.

    Book  Google Scholar 

  176. Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol. 2006;124:381–91. https://doi.org/10.1016/j.jbiotec.2005.12.027.

    Article  CAS  PubMed  Google Scholar 

  177. Tateno T, Fukuda H, Kondo A. Production of L-lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Appl Microbiol Biotechnol. 2007;74:1213–20. https://doi.org/10.1007/s00253-006-0766-y.

    Article  CAS  PubMed  Google Scholar 

  178. Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A. Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol. 2009;84:733–9. https://doi.org/10.1007/s00253-009-2021-9.

    Article  CAS  PubMed  Google Scholar 

  179. Anusree M, Wendisch VF, Nampoothiri KM. Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. Bioresour Technol. 2016;213:239–44. https://doi.org/10.1016/j.biortech.2016.03.019.

    Article  CAS  PubMed  Google Scholar 

  180. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol. 2013;6:131–40. https://doi.org/10.1111/1751-7915.12001.

    Article  CAS  PubMed  Google Scholar 

  181. Mindt M, Heuser M, Wendisch VF. Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. Bioresour Technol. 2019;281:135–42. https://doi.org/10.1016/j.biortech.2019.02.084.

    Article  CAS  PubMed  Google Scholar 

  182. Buschke N, Schäfer R, Becker J, Wittmann C. Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol. 2013;135:544–54. https://doi.org/10.1016/j.biortech.2012.11.047.

    Article  CAS  PubMed  Google Scholar 

  183. Schneider J, Niermann K, Wendisch VF. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol. 2011;154:191–8. https://doi.org/10.1016/j.jbiotec.2010.07.009.

    Article  CAS  PubMed  Google Scholar 

  184. Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol. 2013;145:254–8. https://doi.org/10.1016/j.biortech.2013.02.053.

    Article  CAS  PubMed  Google Scholar 

  185. Pérez-García F, Burgardt A, Kallman DR, Wendisch VF, Bar N. Dynamic co-cultivation process of Corynebacterium glutamicum strains for the fermentative production of riboflavin. Fermentation. 2021;7:11. https://doi.org/10.3390/fermentation7010011.

    Article  CAS  Google Scholar 

  186. Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;92:985–96. https://doi.org/10.1007/s00253-011-3478-x.

    Article  CAS  PubMed  Google Scholar 

  187. Burgardt A, Prell C, Wendisch VF. Utilization of a wheat sidestream for 5-Aminovalerate production in Corynebacterium glutamicum. Front Bioeng Biotechnol. 2021;9:3389. https://doi.org/10.3389/fbioe.2021.732271.

    Article  Google Scholar 

  188. Sasikumar K, Hannibal S, Wendisch VF, Nampoothiri KM. Production of biopolyamide precursors 5-amino valeric acid and putrescine from rice straw hydrolysate by engineered Corynebacterium glutamicum. Front Bioeng Biotechnol. 2021;9:635509. https://doi.org/10.3389/fbioe.2021.635509.

    Article  PubMed Central  PubMed  Google Scholar 

  189. Uhde A, Youn J-W, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2013;97:1679–87. https://doi.org/10.1007/s00253-012-4313-8.

    Article  CAS  PubMed  Google Scholar 

  190. Brautaset T, Jakobsen ØM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C. Appl Microbiol Biotechnol. 2010;87:951–64. https://doi.org/10.1007/s00253-010-2559-6.

    Article  CAS  PubMed  Google Scholar 

  191. Irla M, Nærdal I, Brautaset T, Wendisch VF. Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered bacillus methanolicus strains. Ind Crop Prod. 2017;106:12–20. https://doi.org/10.1016/j.indcrop.2016.11.050.

    Article  CAS  Google Scholar 

  192. Nærdal I, Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol-based cadaverine production by genetically engineered bacillus methanolicus strains. Microb Biotechnol. 2015;8:342–50. https://doi.org/10.1111/1751-7915.12257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Motoyama H, Yano H, Terasaki Y, Anazawa H. Overproduction of l-lysine from methanol by Methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene. Appl Environ Microbiol. 2001;67:3064–70. https://doi.org/10.1128/AEM.67.7.3064-3070.2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Hagishita T, Yoshida T, Izumi Y, Mitsunaga T. Efficient l-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Biosci Biotechnol Biochem. 1996;60:1604–7. https://doi.org/10.1271/bbb.60.1604.

    Article  CAS  PubMed  Google Scholar 

  195. Brito LF, Irla M, Nærdal I, Le SB, Delépine B, Heux S, Brautaset T. Evaluation of heterologous biosynthetic pathways for methanol-based 5-Aminovalerate production by thermophilic bacillus methanolicus. Front Bioeng Biotechnol. 2021;9:686319. https://doi.org/10.3389/fbioe.2021.686319.

    Article  PubMed Central  PubMed  Google Scholar 

  196. Hoffmann SL, Jungmann L, Schiefelbein S, Peyriga L, Cahoreau E, Portais J-C, Becker J, Wittmann C. Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng. 2018;47:475–87. https://doi.org/10.1016/j.ymben.2018.04.019.

    Article  CAS  PubMed  Google Scholar 

  197. Pérez-García F, Klein VJ, Brito LF, Brautaset T. From Brown seaweed to a sustainable microbial feedstock for the production of riboflavin. Front Bioeng Biotechnol. 2022;10:863690. https://doi.org/10.3389/fbioe.2022.863690.

    Article  PubMed Central  PubMed  Google Scholar 

  198. Yao W, Chu C, Deng X, Zhang Y, Liu M, Zheng P, Sun Z. Display of alpha-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch. Arch Microbiol. 2009;191:751–9. https://doi.org/10.1007/s00203-009-0506-7.

    Article  CAS  PubMed  Google Scholar 

  199. Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. Bioresour Technol. 2018;260:302–10. https://doi.org/10.1016/j.biortech.2018.03.113.

    Article  CAS  PubMed  Google Scholar 

  200. Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A. Direct l-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol. 2013;97:7165–72. https://doi.org/10.1007/s00253-013-5009-4.

    Article  CAS  PubMed  Google Scholar 

  201. Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A. Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;90:895–901. https://doi.org/10.1007/s00253-011-3116-7.

    Article  CAS  PubMed  Google Scholar 

  202. Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum for sustainable production of the aromatic dicarboxylic acid dipicolinic acid. Microorganisms. 2022;10:730. https://doi.org/10.3390/microorganisms10040730.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Radek A, Krumbach K, Gätgens J, Wendisch VF, Wiechert W, Bott M, Noack S, Marienhagen J. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. J Biotechnol. 2014;192:156–60. https://doi.org/10.1016/j.jbiotec.2014.09.026.

    Article  CAS  PubMed  Google Scholar 

  204. Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour Technol. 2017;245:1377–85. https://doi.org/10.1016/j.biortech.2017.05.055.

    Article  CAS  PubMed  Google Scholar 

  205. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2008;77:1053–62. https://doi.org/10.1007/s00253-007-1244-x.

    Article  CAS  PubMed  Google Scholar 

  206. Guo X, Li M, Li H, Xu S, He X, Ouyang P, Chen K. Enhanced cadaverine production by engineered Escherichia coli using soybean residue hydrolysate (SRH) as a sole nitrogen source. Appl Biochem Biotechnol. 2021;193:533–43. https://doi.org/10.1007/s12010-020-03444-1.

    Article  CAS  PubMed  Google Scholar 

  207. Joo JC, Oh YH, Yu JH, Hyun SM, Khang TU, Kang KH, Song BK, Park K, Oh M-K, Lee SY, Park SJ. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a miscanthus hydrolysate solution prepared by a newly developed miscanthus hydrolysis process. Bioresour Technol. 2017;245:1692–700. https://doi.org/10.1016/j.biortech.2017.05.131.

    Article  CAS  PubMed  Google Scholar 

  208. Wen J, Bao J. Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn stover hydrolysate. Biotechnol Biofuels. 2019;12:86. https://doi.org/10.1186/s13068-019-1428-5.

    Article  PubMed Central  PubMed  Google Scholar 

  209. Hadiati A, Krahn I, Lindner SN, Wendisch VF. Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresour Bioprocess. 2014;1:25. https://doi.org/10.1186/s40643-014-0025-5.

    Article  Google Scholar 

  210. Khanna S, Goyal A, Moholkar VS. Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol. 2012;32(3):235–62. https://doi.org/10.3109/07388551.2011.604839.

    Article  CAS  PubMed  Google Scholar 

  211. Rittmann D, Lindner SN, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol. 2008;74:6216–22. https://doi.org/10.1128/AEM.00963-08.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Ebringerová A, Hromádková Z, Heinze T. Hemicellulose. In: Heinze T, editor. Polysaccharides I: structure, characterization and use. Berlin: Springer; 2005. p. 1–67. https://doi.org/10.1007/b136816.

    Chapter  Google Scholar 

  213. Rueda C, Calvo PA, Moncalián G, Ruiz G, Coz A. Biorefinery options to valorize the spent liquor from sulfite pulping. J Chem Technol Biotechnol. 2015;90:2218–26. https://doi.org/10.1002/jctb.4536.

    Article  CAS  Google Scholar 

  214. Sinner P, Stiegler M, Herwig C, Kager J. Noninvasive online monitoring of Corynebacterium glutamicum fed-batch bioprocesses subject to spent sulfite liquor raw material uncertainty. Bioresour Technol. 2021;321:124395. https://doi.org/10.1016/j.biortech.2020.124395.

    Article  CAS  PubMed  Google Scholar 

  215. Álvarez-Añorve LI, Calcagno ML, Plumbridge J. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. J Bacteriol. 2005;187:2974–82. https://doi.org/10.1128/JB.187.9.2974-2982.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Gaugué I, Oberto J, Putzer H, Plumbridge J. The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine. PLoS One. 2013;8:e63025. https://doi.org/10.1371/journal.pone.0063025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Matano C, Uhde A, Youn J-W, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol. 2014;98:5633–43. https://doi.org/10.1007/s00253-014-5676-9.

    Article  CAS  PubMed  Google Scholar 

  218. Kusch-Brandt S, Mumme J, Nashalian O, Girotto F, Lavagnolo MC, Udenigwe C. 13-valorization of residues from beverage production. In: Grumezescu AM, Holban AM, editors. Processing and sustainability of beverages. Woodhead Publishing; 2019. p. 451–94. https://doi.org/10.1016/B978-0-12-815259-1.00013-6.

    Chapter  Google Scholar 

  219. Pérez-Bibbins B, Torrado-Agrasar A, Salgado JM, de Souza Oliveira RP, Domínguez JM. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: an overview. Waste Manag. 2015;40:72–81. https://doi.org/10.1016/j.wasman.2015.03.009.

    Article  PubMed  Google Scholar 

  220. Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA. Methanol-essential growth of Escherichia coli. Nat Commun. 2018;9:1508. https://doi.org/10.1038/s41467-018-03937-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Chen FY-H, Jung H-W, Tsuei C-Y, Liao JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell. 2020;182:933–946.e14. https://doi.org/10.1016/j.cell.2020.07.010.

    Article  CAS  PubMed  Google Scholar 

  222. Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol. 2020;16:538–45. https://doi.org/10.1038/s41589-020-0473-5.

    Article  CAS  PubMed  Google Scholar 

  223. Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng. 2018;49:220–31. https://doi.org/10.1016/j.ymben.2018.07.011.

    Article  CAS  PubMed  Google Scholar 

  224. Hennig G, Haupka C, Brito LF, Rückert C, Cahoreau E, Heux S, Wendisch VF. Methanol-essential growth of Corynebacterium glutamicum: adaptive laboratory evolution overcomes limitation due to methanethiol assimilation pathway. Int J Mol Sci. 2020;21:3617. https://doi.org/10.3390/ijms21103617.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais J-C, Wendisch VF. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol. 2015;99:10163–76. https://doi.org/10.1007/s00253-015-6906-5.

    Article  CAS  PubMed  Google Scholar 

  226. Irla M, Wendisch VF. Efficient cell factories for the production of N-methylated amino acids and for methanol-based amino acid production. Microb Biotechnol. 2022;15(8):2145–59. https://doi.org/10.1111/1751-7915.14067.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC. Role of the bacillus methanolicus citrate synthase II gene, city, in regulating the secretion of glutamate in l-lysine-secreting mutants. Appl Environ Microbiol. 2003;69:3986–95. https://doi.org/10.1128/AEM.69.7.3986-3995.2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Gunji Y, Yasueda H. Enhancement of l-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol. 2006;127:1–13. https://doi.org/10.1016/j.jbiotec.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  229. Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF. Genome-based genetic tool development for bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Front Microbiol. 2016;7:1481. https://doi.org/10.3389/fmicb.2016.01481.

    Article  PubMed Central  PubMed  Google Scholar 

  230. Motoyama H, Anazawa H, Katsumata R, Araki K, Teshiba S. Amino acid production from methanol by Methylobacillus glycogenes mutants: isolation of L-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of L-threonine and L-lysine-producing mutants from them. Biosci Biotechnol Biochem. 1993;57:82–7. https://doi.org/10.1271/bbb.57.82.

    Article  CAS  PubMed  Google Scholar 

  231. Figge RM, Ramseier TM, Saier MH. The mannitol repressor (MtlR) of Escherichia coli. J Bacteriol. 1994;176:840–7. https://doi.org/10.1128/jb.176.3.840-847.1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  232. Heravi KM, Altenbuchner J. Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. Microbiol Read Engl. 2014;160:91–101. https://doi.org/10.1099/mic.0.071233-0.

    Article  CAS  Google Scholar 

  233. López MG, Irla M, Brito LF, Wendisch VF. Characterization of D-Arabitol as newly discovered carbon source of bacillus methanolicus. Front Microbiol. 2019;10:1725. https://doi.org/10.3389/fmicb.2019.01725.

    Article  PubMed Central  PubMed  Google Scholar 

  234. Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ. Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR. J Bacteriol. 2012;194:941–55. https://doi.org/10.1128/JB.06064-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Shi S, Qi N, Nielsen J. Microbial production of chemicals driven by CRISPR-Cas systems. Curr Opin Biotechnol. 2022;73:34–42. https://doi.org/10.1016/j.copbio.2021.07.002.

    Article  CAS  PubMed  Google Scholar 

  236. Gu L, Yuan H, Lv X, Li G, Cong R, Li J, Du G, Liu L. High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli. Enzym Microb Technol. 2020;134:109488. https://doi.org/10.1016/j.enzmictec.2019.109488.

    Article  CAS  Google Scholar 

  237. Wang Y, Cheng H, Liu Y, Liu Y, Wen X, Zhang K, Ni X, Gao N, Fan L, Zhang Z, Liu J, Chen J, Wang L, Guo Y, Zheng P, Wang M, Sun J, Ma Y. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun. 2021;12:678. https://doi.org/10.1038/s41467-021-21003-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Chen M, Chen L, Zeng A-P. CRISPR/Cas9-facilitated engineering with growth-coupled and sensor-guided in vivo screening of enzyme variants for a more efficient chorismate pathway in E. coli. Metab Eng Commun. 2019;9:e00094. https://doi.org/10.1016/j.mec.2019.e00094.

    Article  PubMed Central  PubMed  Google Scholar 

  239. Long M, Xu M, Qiao Z, Ma Z, Osire T, Yang T, Zhang X, Shao M, Rao Z. Directed evolution of ornithine Cyclodeaminase using an EvolvR-based growth-coupling strategy for efficient biosynthesis of l-proline. ACS Synth Biol. 2020;9:1855–63. https://doi.org/10.1021/acssynbio.0c00198.

    Article  CAS  PubMed  Google Scholar 

  240. Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5:375–85. https://doi.org/10.1021/acssynbio.5b00216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 2012;13:R40. https://doi.org/10.1186/gb-2012-13-5-r40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  242. Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng. 2012;14:449–57. https://doi.org/10.1016/j.ymben.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  243. Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One. 2014;9:e85731. https://doi.org/10.1371/journal.pone.0085731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Kortmann M, Mack C, Baumgart M, Bott M. Pyruvate carboxylase variants enabling improved lysine production from glucose identified by biosensor-based high-throughput fluorescence-activated cell sorting screening. ACS Synth Biol. 2019;8:274–81. https://doi.org/10.1021/acssynbio.8b00510.

    Article  CAS  PubMed  Google Scholar 

  245. Chen X-F, Xia X-X, Lee SY, Qian Z-G. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Biotechnol Bioeng. 2018;115:1014–27. https://doi.org/10.1002/bit.26521.

    Article  CAS  PubMed  Google Scholar 

  246. Zhou L-B, Zeng A-P. Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol. 2015;4:729–34. https://doi.org/10.1021/sb500332c.

    Article  CAS  PubMed  Google Scholar 

  247. Zhou L-B, Zeng A-P. Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol. 2015;4:1335–40. https://doi.org/10.1021/acssynbio.5b00075.

    Article  CAS  PubMed  Google Scholar 

  248. Stella RG, Wiechert J, Noack S, Frunzke J. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol J. 2019;14:1800444. https://doi.org/10.1002/biot.201800444.

    Article  CAS  Google Scholar 

  249. Jiang L-Y, Chen S-G, Zhang Y-Y, Liu J-Z. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol. 2013;13:47. https://doi.org/10.1186/1472-6750-13-47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng. 2015;32:184–94. https://doi.org/10.1016/j.ymben.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  251. Smith RP, Tanouchi Y, You L. Chapter 13-synthetic microbial consortia and their applications. In: Zhao H, editor. Synthetic biology. Boston: Academic; 2013. p. 243–58. https://doi.org/10.1016/B978-0-12-394430-6.00013-3.

    Chapter  Google Scholar 

  252. Wang J, Lu X, Ying H, Ma W, Xu S, Wang X, Chen K, Ouyang P. A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Front Microbiol. 2018;9:1312. https://doi.org/10.3389/fmicb.2018.01312.

    Article  PubMed Central  PubMed  Google Scholar 

  253. Liu X, Li X-B, Jiang J, Liu Z-N, Qiao B, Li F-F, Cheng J-S, Sun X, Yuan Y-J, Qiao J, Zhao G-R. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metab Eng. 2018;47:243–53. https://doi.org/10.1016/j.ymben.2018.03.016.

    Article  CAS  PubMed  Google Scholar 

  254. Burmeister A, Hilgers F, Langner A, Westerwalbesloh C, Kerkhoff Y, Tenhaef N, Drepper T, Kohlheyer D, von Lieres E, Noack S, Grünberger A. A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip. 2018;19:98–110. https://doi.org/10.1039/c8lc00977e.

    Article  CAS  PubMed  Google Scholar 

  255. Chua HB, Robinson JP. Formate-limited growth of Methanobacterium formicium in steady-state cultures. Arch Microbiol. 1983;135:158–60. https://doi.org/10.1007/BF00408027.

    Article  CAS  Google Scholar 

  256. Kirst H, Ferlez BH, Lindner SN, Cotton CAR, Bar-Even A, Kerfeld CA. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proc Natl Acad Sci. 2022;119:e2116871119. https://doi.org/10.1073/pnas.2116871119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 2019;179:1255–1263.e12. https://doi.org/10.1016/j.cell.2019.11.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Gregory GJ, Bennett RK, Papoutsakis ET. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab Eng. 2021;71:99–116. https://doi.org/10.1016/j.ymben.2021.09.005.

    Article  CAS  PubMed  Google Scholar 

  259. Barbot YN, Al-Ghaili H, Benz R. A review on the valorization of macroalgal wastes for biomethane production. Mar Drugs. 2016;14:120. https://doi.org/10.3390/md14060120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  260. Hakvåg S, Nærdal I, Heggeset TMB, Kristiansen KA, Aasen IM, Brautaset T. Production of value-added chemicals by bacillus methanolicus strains cultivated on mannitol and extracts of seaweed saccharina latissima at 50°C. Front Microbiol. 2020;11:680. https://doi.org/10.3389/fmicb.2020.00680.

    Article  PubMed Central  PubMed  Google Scholar 

  261. Shin JW, Lee OK, Park HH, Kim HS, Lee EY. Molecular characterization of a novel oligoalginate lyase consisting of AlgL- and heparinase II/III-like domains from Stenotrophomonas maltophilia KJ-2 and its application to alginate saccharification. Korean J Chem Eng. 2015;32:917–24. https://doi.org/10.1007/s11814-014-0282-1.

    Article  CAS  Google Scholar 

  262. Badur AH, Jagtap SS, Yalamanchili G, Lee J-K, Zhao H, Rao CV. Alginate lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic. Appl Environ Microbiol. 2015;81:1865–73. https://doi.org/10.1128/AEM.03460-14.

    Article  PubMed Central  PubMed  Google Scholar 

  263. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y. An engineered microbial platform for direct biofuel production from brown macroalgae. Science. 2012;335:308–13. https://doi.org/10.1126/science.1214547.

    Article  CAS  PubMed  Google Scholar 

  264. Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev. 2010;14:578–97. https://doi.org/10.1016/j.rser.2009.10.003.

    Article  CAS  Google Scholar 

  265. Hicks TM, Verbeek CJR. Chapter 1-protein-rich by-products: production statistics, legislative restrictions, and management options. In: Singh Dhillon G, editor. Protein byproducts. Academic; 2016. p. 1–18. https://doi.org/10.1016/B978-0-12-802391-4.00001-X.

    Chapter  Google Scholar 

  266. Adhikari BB, Chae M, Bressler DC. Utilization of slaughterhouse waste in value-added applications: recent advances in the development of wood adhesives. Polymers. 2018;10:176. https://doi.org/10.3390/polym10020176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Amorim ML, Soares J, Coimbra JS, Dos R, de Oliveira Leite M, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr. 2021;61:1976–2002. https://doi.org/10.1080/10408398.2020.1768046.

    Article  CAS  PubMed  Google Scholar 

  268. Chen S, Liao W, Liu C, Wen Z, Kincaid RL, Harrison JH, Elliott DC, Brown MD, Solana AE, Stevens DJ. Value-added chemicals from animal manure. Richland., Environmental Molecular Sciences Laboratory (US): Pacific Northwest National Lab; 2003. https://doi.org/10.2172/15009485.

    Book  Google Scholar 

  269. Wendisch VF, Mindt M, Pérez-García F. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl Microbiol Biotechnol. 2018;102:3583–94. https://doi.org/10.1007/s00253-018-8890-z.

    Article  CAS  PubMed  Google Scholar 

  270. Chae TU, Kim WJ, Choi S, Park SJ, Lee SY. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci Rep. 2015;5:13040. https://doi.org/10.1038/srep13040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Wang L, Li G, Deng Y. Diamine biosynthesis: research progress and application prospects. Appl Environ Microbiol. 2020;86:e01972–20. https://doi.org/10.1128/AEM.01972-20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Klatte S, Wendisch VF. Redox self-sufficient whole cell biotransformation for amination of alcohols. Bioorg Med Chem. 2014;22:5578–85. https://doi.org/10.1016/j.bmc.2014.05.012.

    Article  CAS  PubMed  Google Scholar 

  273. Sung S, Jeon H, Sarak S, Murshidul Ahsan M, Patil MD, Kroutil W, Kim B-G, Yun H. Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines. Green Chem. 2018;20:4591–5. https://doi.org/10.1039/C8GC02122H.

    Article  CAS  Google Scholar 

  274. Maddess ML, Tackett MN, Ley SV. Total synthesis studies on macrocyclic pipecolic acid natural products: FK506, the antascomicins and rapamycin. In: Petersen F, Amstutz R, editors. Natural compounds as drugs, vol. 2. Basel: Birkhäuser; 2008. p. 13–186. https://doi.org/10.1007/978-3-7643-8595-8_2.

    Chapter  Google Scholar 

  275. Pastor JM, Salvador M, Argandoña M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Cánovas M. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv. 2010;28:782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005.

    Article  CAS  PubMed  Google Scholar 

  276. Luo Z, Wang Z, Wang B, Lu Y, Yan L, Zhao Z, Bai T, Zhang J, Li H, Wang W, Cheng J. An artificial pathway for N-hydroxy-pipecolic acid production from L-lysine in Escherichia coli. Front Microbiol. 2022;13:842804. https://doi.org/10.3389/fmicb.2022.842804.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pérez-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-García, F., Brito, L.F., Wendisch, V.F. (2023). Microbial Production of Amine Chemicals from Sustainable Substrates. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_7

Download citation

Publish with us

Policies and ethics