Skip to main content
Log in

Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Relieving the feedback inhibition of key enzymes in a metabolic pathway is frequently the first step of producer-strain construction by genetic engineering. However, the strict feedback regulation exercised by microorganisms in methionine biosynthesis often makes it difficult to produce methionine at a high level. In this study, Corynebacterium glutamicum ATCC 13032 was metabolically engineered for methionine production. First, the metD gene encoding the methionine uptake system was deleted to achieve extracellular accumulation of methionine. Then, random mutagenesis was performed to remove feedback inhibition by metabolic end-products. The resulting strain C. glutamicum ENM-16 was further engineered to block or decrease competitive branch pathways by deleting the thrB gene and changing the start codon of the dapA gene, followed by point mutations of lysC (C932T) and pyc (G1A, C1372T) to increase methionine precursor supply. To enrich the NADPH pool, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the pentose phosphate pathway were mutated to reduce their sensitivity to inhibition by intracellular metabolites. The resultant strain C. glutamicum LY-5 produced 6.85 ± 0.23 g methionine l−1 with substrate-specific yield (Y P/S) of 0.08 mol per mol of glucose after 72 h fed-batch fermentation. The strategies described here will be useful for construction of methionine engineering strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antoine FR, Wei CI, Littell RC, Marshall MR (1999) HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J Agric Food Chem 47(12):5100–5107

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum - over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109. doi:10.1016/j.jbiotec.2007.05.026

    Article  CAS  PubMed  Google Scholar 

  • Belfaiza J, Martel A, Margarita D, Saint Girons I (1998) Direct sulfhydrylation for methionine biosynthesis in Leptospira meyeri. J Bacteriol 180(2):250–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14(1):47–58. doi:10.1016/j.ymben.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Hausmann R (2002) Molecular clones. Springer, The Netherlands. doi:10.1007/978-94-017-3540-7_20

    Book  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes—gene-splicing by overlap extension. Gene 77(1):61–68. doi:10.1016/0378-1119(89)90359-4

    Article  CAS  PubMed  Google Scholar 

  • Hwang BJ, Kim Y, Kim HB, Hwang HJ, Kim JH, Lee HS (1999) Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine gamma-synthase. Mol Cells 9(3):300–308

    CAS  PubMed  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiol-SGM 153(8):2491–2504. doi:10.1099/mic.0.2006/005587-0

    Article  CAS  Google Scholar 

  • Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE (2009) Overexpression of wild-type aspartokinase increases l-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 75(3):652–661. doi:10.1128/AEM.01176-08

    Article  CAS  PubMed  Google Scholar 

  • Kase H, Nakayama K (1975) l-methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 39:153–160

    CAS  Google Scholar 

  • Kim JW, Kim HJ, Kim Y, Lee MS, Lee HS (2001) Properties of the Corynebacterium glutamicum metC gene encoding cystathionine beta-lyase. Mol Cells 11(2):220–225

    CAS  PubMed  Google Scholar 

  • Kim SY, Lee J, Lee SY (2015) Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng 112(2):416–421. doi:10.1002/bit.25440

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva GY, Gelfand MS (2007) Regulation of methionine/cysteine biosynthesis in Corynebacterium glutamicum and related organisms. Mol Biol 41(1):126–136. doi:10.1134/S0026893307010177

    Article  CAS  Google Scholar 

  • Kroemer JO, Wittmann C, Schroeder H, Heinzle E (2006) Metabolic pathway analysis for rational design of l-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(4):353–369. doi:10.1016/j.ymben.2006.02.001

    Article  CAS  Google Scholar 

  • Kromer JO, Heinzle E, Schroder H, Wittmann C (2006) Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 188(2):609–618. doi:10.1128/JB.188.2.609-618.2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23(1):41–61. doi:10.1016/j.biotechadv.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Garg S, Bisaria VS, Sreekrishnan TR, Gomes J (2003) Production of methionine by a multi-analogue resistant mutant of Corynebacterium lilium. Process Biochem 38(8):1165–1171. doi:10.1016/S0032-9592(02)00287-X

    Article  CAS  Google Scholar 

  • March JC, Eiteman MA, Altman E (2002) Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl Environ Microbiol 68(11):5620–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140

    Article  PubMed  Google Scholar 

  • Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242(2):265–274. doi:10.1016/j.femsle.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee J, Sim S, Kim Y, Lee H (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9(4):327–336. doi:10.1016/j.ymben.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Kim HU, Kim TY, Park JS, Kim S, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat Commun 5:4618. doi:10.1038/ncomms5618

    CAS  PubMed  Google Scholar 

  • Rey DA, Puhler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Bacteriol 103(1):51–65. doi:10.1016/S0168-1656(03)00073-7

    CAS  Google Scholar 

  • Rey DA, Nentwich SS, Koch DJ, Ruckert C, Puhler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56(4):871–887. doi:10.1111/j.1365-2958.2005.04586.x

    Article  CAS  PubMed  Google Scholar 

  • Rueckert C, Milse J, Albersmeier A, Koch DJ, Puehler A, Kalinowski J (2008) The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genom 9:483. doi:10.1186/1471-2164-9-483

    Article  Google Scholar 

  • Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Shen W, Xiong Y, Liu H, Zheng H, Zhou H, Rui B, Liu J, Wu J, Shi Y (2009) Increasing the accuracy of mass isotopomer analysis through calibration curves constructed using biologically synthesized compounds. J Mass Spectrom 44(7):1066–1080. doi:10.1002/jms.1583

    Article  CAS  PubMed  Google Scholar 

  • Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45(5):362–367. doi:10.1007/s00284-002-3728-3

    Article  CAS  PubMed  Google Scholar 

  • Tosaka O, Takinami K (1986) Biotechnology of amino acid production. In: Aida K, Chibata I, Nakayama K (eds) Progress in industrial microbiology, vol 24, 24th edn. Elsevier, Tokyo, pp 152–172

    Google Scholar 

  • Trotschel C, Deutenberg D, Bathe B, Burkovski A, Kramer R (2005) Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 187(11):3786–3794. doi:10.1128/JB.187.11.3786-3794.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 22:40–52. doi:10.1016/j.ymben.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  • Willke T (2014) Methionine production—a critical review. Appl Microbiol Biotechnol 98(24):9893–9914. doi:10.1007/s00253-014-6156-y

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Han M, Zhang J, Guo Y, Zhang W (2014) Metabolic engineering Corynebacterium glutamicum for the l-lysine production by increasing the flux into l-lysine biosynthetic pathway. Amino Acids 46(9):2165–2175. doi:10.1007/s00726-014-1768-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Twelfth Five-Year Plan National Science and Technology Program on Rural Area (2014BAL02B00). We are grateful to Professor Jihui Wang (Dalian Polytechnic University, China) for the kind help on the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cong, H., Liu, B. et al. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie van Leeuwenhoek 109, 1185–1197 (2016). https://doi.org/10.1007/s10482-016-0719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0719-0

Keywords

Navigation