Skip to main content
Log in

Bio-based production of the platform chemical 1,5-diaminopentane

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the rising era of bio-economy, the five carbon compound 1,5-diaminopentane receives increasing interest as platform chemical, especially as innovative building block for bio-based polymers. The vital interest in bio-based supply of 1,5-diaminopentane has strongly stimulated research on the development of engineered producer strains. Based on the state-of-art knowledge on the pathways and reactions linked to microbial 1,5-diaminopentane metabolism, the review covers novel systems metabolic engineering approaches towards hyper-producing cell factories of Corynebacterium glutamicum or Escherichia coli. This is integrated into the whole value chain from renewable feedstocks via 1,5-diaminopentane to innovative biopolymers involving bioprocess engineering considerations for economic supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auger EA, Bennett GN (1989) Regulation of lysine decarboxylase activity in Escherichia coli K-12. Arch Microbiol 151(5):466–468

    Article  CAS  PubMed  Google Scholar 

  • Bowman WH, Tabor CW, Tabor H (1973) Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem 248(7):2480–2486

    Article  CAS  PubMed  Google Scholar 

  • Brieger L (1885) Weitere Untersuchungen über Ptomaine. A. Hirschwald, Berlin

    Google Scholar 

  • Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317

    Article  CAS  PubMed  Google Scholar 

  • Carothers WH (1938) Linear polyamides and their production. US Patent Office, Pat 2, 130

  • Cassan M, Parsot C, Cohen GN, Patte JC (1986) Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. J Biol Chem 261(3):1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100(5):2261–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner EW, Tabor CW, Tabor H (1979) Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem 254(24):12419–12426

    Article  CAS  PubMed  Google Scholar 

  • Haywood GW, Large PJ (1985) The occurrence, subcellular localization and partial purification of diamine acetyltransferase in the yeast Candida boidinii grown on spermidine or putrescine as sole nitrogen source. Eur J Biochem 148(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22(10):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M (2005) L-Tryptophan production. In: Eggeling L, Bott M (eds) Handbook of Cornyebacterium glutamicum. CRC Press, Boca Raton, pp 439–463

    Google Scholar 

  • Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5(5):1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Kang IH, Kim JS, Kim EJ, Lee JK (2007) Cadaverine protects Vibrio vulnificus from superoxide stress. J Microbiol Biotechnol 17(1):176–179

    CAS  PubMed  Google Scholar 

  • Katinka M, Cossart P, Sibilli L, Saint-Girons I, Chalvignac MA, Le Bras G, Cohen GN, Yaniv M (1980) Nucleotide sequence of the thrA gene of Escherichia coli. Proc Natl Acad Sci USA 77(10):5730–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelle R, Laufer B, Brunzema C, Weuster-Botz D, Krämer R, Wandrey C (1996) Reaction engineering analysis of l-lysine transport by Corynebacterium glutamicum. Biotechnol Bioeng 51(1):40–50

    Article  CAS  PubMed  Google Scholar 

  • Kelle R, Hermann T, Bathe B (2005) L-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488

    Google Scholar 

  • Kim JS, Choi SH, Lee JK (2006) Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress. J Bacteriol 188(24):8586–8592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura E (2005) L-Glutamate production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 439–463

    Chapter  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76(15):5175–5180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597

    Article  CAS  PubMed  Google Scholar 

  • Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H (2008) Gamma-glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 283(29):19981–19990

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemonnier M, Lane D (1998) Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144(Pt 3):751–760

    Article  CAS  PubMed  Google Scholar 

  • Melzer G, Esfandabadi ME, Franco-Lara E, Wittmann C (2009) Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng SY, Bennett GN (1992) Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174(8):2659–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michal G (1999) Biochemical pathways. Wiley, Chichester

    Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Mimizuka T, Kazami J (2002) Host and method for producing cadaverine, JP Patent 2002223770.

  • Neely MN, Olson ER (1996) Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J Bacteriol 178(18):5522–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97(9):1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Oh IJ, Kim DH, Oh EK, Lee SY, Lee J (2009) Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol 19(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459–464

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104(19):7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popkin PS, Maas WK (1980) Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J Bacteriol 141(2):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian ZG, Xia XX, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108(1):93–103

    Article  CAS  Google Scholar 

  • Samartzidou H, Delcour AH (1999) Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 181(3):791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR (2003) Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol 3(2)

    Article  PubMed  PubMed Central  Google Scholar 

  • Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004) Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51(5):1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Stellmacher R, Hangebrauk J, Wittmann C, Scholten E, von Abendroth G (2010) Fermentative manufacture of succinic acid with Basfia succiniciproducens DD1 in serum flasks. Chemie Ingenieur Technik 82(8):1223–1229

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49(1):81–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor H, Hafner EW, Tabor CW (1980) Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J Bacteriol 144(3):952–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuka Y, Yamaguchi Y, Ono M, Kamio Y (2000) Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J Bacteriol 182(23):6732–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Thielen M (2010) Bio-polyamides for automotive applications. Bioplastics MAGAZINE 5:10–11

    Google Scholar 

  • Tkachenko AG (2004) Mechanisms of protective functions of Escherichia coli polyamines against toxic effect of paraquat, which causes superoxide stress. Biochemistry (Mosc) 69(2):188–194

    Article  CAS  Google Scholar 

  • Tkachenko AG, Pozhidaeva ON, Shumkov MS (2006) Role of polyamines in formation of multiple antibiotic resistance of Escherichia coli under stress conditions. Biochemistry (Mosc) 71(9):1042–1049

    Article  CAS  Google Scholar 

  • Tkachenko AG, Shumkov MS, Akhova AV (2009) Adaptive functions of Escherichia coli polyamines in response to sublethal concentrations of antibiotics. Mikrobiologiia 78(1):32–41

    CAS  PubMed  Google Scholar 

  • Tyo KE, Fischer CR, Simeon F, Stephanopoulos G (2010) Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. Metab Eng 12(3):187–195

    Article  CAS  PubMed  Google Scholar 

  • Van Dien SJ, Iwatani S, Usuda Y, Matsui K (2006) Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. J Biosci Bioeng 102(1):34–40

    Article  PubMed  CAS  Google Scholar 

  • Völkert M, Zelder O, Ernst B, Jeong WK (2009) Method for fermentatively producing 1, 5-diaminopentane, US Patent US 2010/0292429 A1

  • Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER (1992) Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174(2):530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelley S (2004) Top value added chemicals from biomass. Volume 1. Results of screening for potential candidates from sugars and synthesis gas, U.S. Department of Energy

  • Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47(1):183–194

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H (1997) The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72(3):167–172

    Article  CAS  PubMed  Google Scholar 

  • Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis—Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8(5):432–446

    Article  CAS  Google Scholar 

  • Zakin MM, Duchange N, Ferrara P, Cohen GN (1983) Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J Biol Chem 258(5):3028–3031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by the BMBF-Grant “Biobased Polyamides through Fermentation” (No 0315239A). We further thank Dr. Guido Melzer (Institute of Biochemical Engineering, TU Braunschweig) for calculation of optimal diaminopentane yields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kind, S., Wittmann, C. Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91, 1287–1296 (2011). https://doi.org/10.1007/s00253-011-3457-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3457-2

Keywords

Navigation