Skip to main content
Log in

Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

l-tryptophan (l-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient l-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the l-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroGfbr). To further improve the production of l-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of l-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aiba S, Tsunekawa H, Imanaka T (1982) New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro. Appl Environ Microbiol 43:289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300. https://doi.org/10.1006/mben.2001.0196

    Article  CAS  PubMed  Google Scholar 

  3. Chan E-C, Tsai H-L, Chen S-L, Mou D-G (1993) Amplification of the tryptophan operon gene in Escherichia coli chromosome to increase l-tryptophan biosynthesis. Appl Microbiol Biotechnol 40:301–305. https://doi.org/10.1007/bf00170384

    Article  CAS  Google Scholar 

  4. Chandran SS, Yi J, Draths KM, Von DR, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814

    Article  CAS  PubMed  Google Scholar 

  5. Cheng L-K, Wang J, Xu Q-Y, Xie X-X, Zhang Y-J, Zhao C-G, Chen N (2012) Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli. Ann of Microbiology 62:1625–1634. https://doi.org/10.1007/s13213-012-0419-6

    Article  CAS  Google Scholar 

  6. de la Cueva-Mendez G, Pimentel B (2007) Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 8:458–464. https://doi.org/10.1038/sj.embor.7400957

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Smit MH, van Duin J (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol 244:144–150. https://doi.org/10.1006/jmbi.1994.1714

    Article  PubMed  Google Scholar 

  8. Dodge TC, Gerstner JM (2002) Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E coli. J Chem Technol Biotechnol 77:1238–1245

    Article  CAS  Google Scholar 

  9. Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623. https://doi.org/10.1038/nbt0596-620

    Article  CAS  PubMed  Google Scholar 

  10. Ger YM, Chen SL, Chiang HJ, Shiuan D (1994) A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli. J Biochem 116:986–990

    Article  CAS  PubMed  Google Scholar 

  11. Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of l-tryptophan in Escherichia coli. Microb Cell Fact 11:30. https://doi.org/10.1186/1475-2859-11-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu P, Yang F, Li F, Liang Q, Qi Q (2013) Knocking out analysis of tryptophan permeases in Escherichia coli for improving l-tryptophan production. Appl Microbiol Biotechnol 97:6677–6683. https://doi.org/10.1007/s00253-013-4988-5

    Article  CAS  PubMed  Google Scholar 

  13. Gunsalus RP, Yanofsky C (1980) Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci USA 77:7117–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han K, Lim HC, Hong J (1992) Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39:663–671. https://doi.org/10.1002/bit.260390611

    Article  CAS  PubMed  Google Scholar 

  15. Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694

    Article  PubMed  Google Scholar 

  16. Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626. https://doi.org/10.1007/s00253-005-0252-y

    Article  CAS  PubMed  Google Scholar 

  17. Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ (2007) The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol 189:5574–5581. https://doi.org/10.1128/jb.00564-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klig LS, Carey J, Yanofsky C (1988) trp repressor interactions with the trp aroH and trpR operators. Comparison of repressor binding in vitro and repression in vivo. J Mol Biol 202:769–777

    Article  CAS  PubMed  Google Scholar 

  19. Laalami S, Putzer H (2011) mRNA degradation and maturation in prokaryotes: the global players. Biomol Concepts 2:491–506. https://doi.org/10.1515/bmc.2011.042

    Article  CAS  PubMed  Google Scholar 

  20. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8. https://doi.org/10.1007/s00253-005-0155-y

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Duan X, Wu J (2016) l-Tryptophan Production in Escherichia coli Improved by weakening the Pta-AckA Pathway. PLoS One 11:e0158200. https://doi.org/10.1371/journal.pone.0158200

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meza E, Becker J, Bolivar F, Gosset G, Wittmann C (2012) Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 11:127. https://doi.org/10.1186/1475-2859-11-127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muñoz ME, Ponce E (2003) Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 135:197

    Article  PubMed  Google Scholar 

  24. Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez A, Martinez JA, Baez-Viveros JL, Flores N, Hernandez-Chavez G, Ramirez OT, Gosset G, Bolivar F (2013) Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Fact 12:86. https://doi.org/10.1186/1475-2859-12-86

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sabido A, Sigala JC, Hernandez-Chavez G, Flores N, Gosset G, Bolivar F (2014) Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol Bioeng 111:1150–1160. https://doi.org/10.1002/bit.25177

    Article  CAS  PubMed  Google Scholar 

  28. Sadeghiyan-Rizi T, Fooladi J, Sadrai S (2016) Preliminary study on cost-effective l-Tryptophan production from indole and l-Serine by E. coli cells. Avicenna J Med Biotechnol 8:188–192

    PubMed  PubMed Central  Google Scholar 

  29. Sarsero JP, Wookey PJ, Pittard AJ (1991) Regulation of expression of the Escherichia coli K-12 mtr gene by TyrR protein and Trp repressor. J Bacteriol 173:4133–4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60

    Article  CAS  PubMed  Google Scholar 

  31. Shen T, Liu Q, Xie X, Xu Q, Chen N (2012) Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. J Biomed Biotechnol 2012:605219. https://doi.org/10.1155/2012/605219

    PubMed  PubMed Central  Google Scholar 

  32. Shi A, Zhu X, Lu J, Zhang X, Ma Y (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10. https://doi.org/10.1016/j.ymben.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  33. Tang J, Zhu X, Lu J, Liu P, Xu H, Tan Z, Zhang X (2013) Recruiting alternative glucose utilization pathways for improving succinate production. Appl Microbiol Biotechnol 97:2513–2520. https://doi.org/10.1007/s00253-012-4344-1

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N (2013) Genetic engineering of Escherichia coli to enhance production of l-tryptophan. Appl Microbiol Biotechnol 97:7587–7596. https://doi.org/10.1007/s00253-013-5026-3

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Wu C, Chen T, Chen X, Zhao X (2006) Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Biotech Lett 28:89–93. https://doi.org/10.1007/s10529-005-4952-2

    Article  Google Scholar 

  36. Yoo SM, Na D, Lee SY (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc 8:1694–1707. https://doi.org/10.1038/nprot.2013.105

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106:20180–20185. https://doi.org/10.1073/pnas.0905396106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C (2016) Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact 15:205. https://doi.org/10.1186/s12934-016-0605-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao Y, Wang CS, Li FF, Liu ZN, Zhao GR (2016) Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli. BMC Biotechnol 16:52. https://doi.org/10.1186/s12896-016-0284-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhao ZJ, Zou C, Zhu YX, Dai J, Chen S, Wu D, Wu J, Chen J (2011) Development of l-tryptophan production strains by defined genetic modification in Escherichia coli. J Ind Microbiol Biotechnol 38:1921–1929. https://doi.org/10.1007/s10295-011-0978-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Tianjin Science Fund for Distinguished Young Scholars (17JCJQJC45300), the Nature Science Foundation of Tianjin City (CN) (16JCYBJC23500), Tianjin science and technology Project (15PTCYSY00020), the Key Projects in the Tianjin Science & Technology Pillar Program (14ZCZDSY00058), and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Cong or Dawei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All authors have agreed to the submission this manuscript to the “Journal of Industrial Microbiology and Biotechnology”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y., Ding, D. et al. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. J Ind Microbiol Biotechnol 45, 357–367 (2018). https://doi.org/10.1007/s10295-018-2020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2020-x

Keywords

Navigation