Skip to main content
Log in

Display of α-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We developed a new cell surface display system in Corynebacterium glutamicum based on the C-terminally truncated NCgl1221 anchor protein to increase l-glutamate production from starch directly. The C-terminally truncated NCgl1221 protein is a mutant NCgl1221 and leads to the constitutive export of l-glutamate. The N terminus of α-amylase (AmyA) was fused to truncated NCgl1221, and the resulting fusion protein was expressed on the cell surface by IPTG induction. Localization of the fusion protein was confirmed by immunofluorescence microscopy and flow cytometric analysis. The results of l-glutamate fermentation showed that the soluble starch was utilized to grow and produce l-glutamate by the recombinant strain displaying AmyA. The amount of soluble starch was reduced from 30.0 ± 2.8 to 4.5 ± 0.7 g/l under non-inducing condition and from 50.0 ± 2.4 to 12.5 ± 1.1 g/l under biotin limitation in 36 h. The glutamate concentration in the medium was transiently increased in 14 h under no induction, while under biotin-limiting condition, glutamate production was continuously elevated during fermentation. The amount of glutamate reached 19.3 ± 2.1 g/l after 26 h of fermentation with biotin limitation, which was greater than that produced by the strain using PgsA, one of the poly-γ-glutamate synthetase complexes, as the anchor protein under the same condition. Therefore, the truncated NCgl1221 anchor protein has more advantages than the PgsA anchor protein in glutamate fermentation because truncated NCgl1221 leads to the constitutive export of l-glutamate without any treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes l-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Åvall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva A (2002) Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 68:5943–5951

    Article  PubMed  Google Scholar 

  • Åvall-Jääskeläinen S, Lindholm A, Palva A (2003) Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol 69:2230–2236

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Reberse PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Duperray F, Jezequel D, Ghazi A, Letellier L, Shechter E (1992) Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants. Biochim Biophys Acta 1103:250–258

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC press, Boca Raton

    Google Scholar 

  • Hofnung M (1991) Expression of foreign polypeptides at the Escherichia coli cell surface. Methods Cell Biol 34:77–105

    Article  CAS  PubMed  Google Scholar 

  • Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997) A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiency produces l-glutamate in the presence of an excess of biotin. Biochem Biophys Res Commun 234:157–161

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Lee SF, March RJ, Halperin SA, Faulkner G, Gao L (1999) Surface expression of a protective recombinant pertussis toxin S1 subunit fragment in Streptococcus gordonii. Infect Immun 67:1511–1516

    CAS  PubMed  Google Scholar 

  • Leenhouts K, Buist G, Kok J (1999) Anchoring of proteins to lactic acid bacteria. Antonie van Leeuwenhoek 76:367–376

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Ouyang SP, Kim J, Chen GQ (2007) The impact of PHB accumulation on l-glutamate production by recombinant Corynebacterium glutamicum. J Biotechnol 132:273–279

    Article  CAS  PubMed  Google Scholar 

  • Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production. Appl Environ Microbiol 73:4491–4498

    Article  CAS  PubMed  Google Scholar 

  • Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A (2005) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 20:1–9

    Google Scholar 

  • Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of α-amylase on the surface of Lactobacillus casei cells by use of the pgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72:269–275

    Article  CAS  PubMed  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  CAS  PubMed  Google Scholar 

  • Nunheimer TD, Birnbaum J, Ihnen ED, Demain AL (1970) Product inhibition of the fermentative formation of glutamic acid. Appl Microbiol 20:215–217

    CAS  PubMed  Google Scholar 

  • Samuelson P, Gunneriusson E, Nygren PA, Ståhl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  CAS  PubMed  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391

    Article  CAS  PubMed  Google Scholar 

  • Shanlin F, Silvia G, Wendy J, Janusz MG, Roger TD (1995) Biological fate of amino acid, peptide and protein hydroperoxides. J Biochem 311:821–827

    Google Scholar 

  • Shiio I, Otsuka S, Takahashi M (1962) Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 51:56–62

    CAS  PubMed  Google Scholar 

  • Ståhl S, Uhlén M (1997) Bacterial surface display: trends and progress. Trends Biotechnol 15:185–192

    Article  PubMed  Google Scholar 

  • Ståhl S, Robert A, Gunneriusson E, Wernérus H, Cano F, Liljeqvist S, Hansson M, Nguyen TN, Samuelson P (2000) Staphylococcal surface display and its applications. Int J Med Microbiol 290:571–577

    PubMed  Google Scholar 

  • Steidler L, Viaene J, Fiers W, Remaut E (1998) Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A. Appl Environ Microbiol 64:342–345

    CAS  PubMed  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007a) Production of l-Lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007b) Direct production of l-Lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    Article  CAS  PubMed  Google Scholar 

  • Turner MS, Hafner LM, Walsh T, Giffard PM (2003) Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11. Appl Environ Microbiol 69:5855–5863

    Article  CAS  PubMed  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  • Xu Z, Lee SY (1999) Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl Environ Microbiol 65:5142–5147

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National High Technology Research and Development Program of China (863 Program; No. 2006AA020301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhao Deng.

Additional information

Communicated by Wolfgang Buckel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, W., Chu, C., Deng, X. et al. Display of α-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch. Arch Microbiol 191, 751–759 (2009). https://doi.org/10.1007/s00203-009-0506-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0506-7

Keywords

Navigation