Skip to main content

Aerobic Utilization of Methanol for Microbial Growth and Production

  • Chapter
  • First Online:
One-Carbon Feedstocks for Sustainable Bioproduction

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 180))

Abstract

Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C–C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubey AA, Wani SR, Jain V (2018) Methylotrophy in mycobacteria: dissection of the methanol metabolism pathway in Mycobacterium smegmatis. J Bacteriol 200(17). https://doi.org/10.1128/JB.00288-18

  2. Krog A, Heggeset TM, Muller JE, Kupper CE, Schneider O, Vorholt JA, Ellingsen TE, Brautaset T (2013) Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 8(3):e59188. https://doi.org/10.1371/journal.pone.0059188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheehan MC, Bailey CJ, Dowds BC, McConnell DJ (1988) A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus. Biochem J 252(3):661–666. https://doi.org/10.1042/bj2520661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T (2012) Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 78(15):5170–5181. https://doi.org/10.1128/AEM.00703-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Irla M, Neshat A, Winkler A, Albersmeier A, Heggeset TM, Brautaset T, Kalinowski J, Wendisch VF, Ruckert C (2014) Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph. J Biotechnol 188:110–111. https://doi.org/10.1016/j.jbiotec.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  6. Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J (1997) Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 244(2):426–433. https://doi.org/10.1111/j.1432-1033.1997.00426.x

    Article  CAS  PubMed  Google Scholar 

  7. Anthony C (1991) Assimilation of carbon by methylotrophs. Biotechnology 18:79–109. https://doi.org/10.1016/b978-0-7506-9188-8.50011-5

    Article  CAS  PubMed  Google Scholar 

  8. Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A (2020) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 62:168–180. https://doi.org/10.1016/j.copbio.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011:101298. https://doi.org/10.1155/2011/101298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ozimek P, van Dijk R, Latchev K, Gancedo C, Wang DY, van der Klei IJ, Veenhuis M (2003) Pyruvate carboxylase is an essential protein in the assembly of yeast peroxisomal oligomeric alcohol oxidase. Mol Biol Cell 14(2):786–797. https://doi.org/10.1091/mbc.e02-07-0417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luers GH, Advani R, Wenzel T, Subramani S (1998) The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast 14(8):759–771. https://doi.org/10.1002/(SICI)1097-0061(19980615)14:8<759::AID-YEA275>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  12. Russmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guerrasio R, Klavins K, Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A, Krebiehl G, Sonntag D, Zellnig G, Daum G, Graf AB, Altmann F, Koellensperger G, Hann S, Sauer M, Mattanovich D, Gasser B (2015) Systems-level organization of yeast methylotrophic lifestyle. BMC Biol 13:80. https://doi.org/10.1186/s12915-015-0186-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763(12):1453–1462. https://doi.org/10.1016/j.bbamcr.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Tan X, Titorenko VI, van der Klei IJ, Sulter GJ, Haima P, Waterham HR, Eyers M, Harder W, Veenhuis M, Cregg JM (1995) Characterization of peroxisome-deficient mutants of Hansenula polymorpha. Curr Genet 28(3):248–257. https://doi.org/10.1007/BF00309784

    Article  CAS  PubMed  Google Scholar 

  15. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13(10):2603–2622. https://doi.org/10.1111/j.1462-2920.2011.02464.x

    Article  CAS  PubMed  Google Scholar 

  16. Claassens NJ, Scarinci G, Fischer A, Flamholz AI, Newell W, Frielingsdorf S, Lenz O, Bar-Even A (2020) Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle. Proc Natl Acad Sci U S A 117(36):22452–22461. https://doi.org/10.1073/pnas.2012288117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80. https://doi.org/10.1016/s0065-2911(08)60129-0

    Article  CAS  PubMed  Google Scholar 

  18. Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190(11):3817–3823. https://doi.org/10.1128/JB.00180-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keltjens JT, Pol A, Reimann J, Op den Camp HJ (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98(14):6163–6183. https://doi.org/10.1007/s00253-014-5766-8

    Article  CAS  PubMed  Google Scholar 

  20. Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178(4):239–249. https://doi.org/10.1007/s00203-002-0450-2

    Article  CAS  PubMed  Google Scholar 

  21. Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281(5373):99–102. https://doi.org/10.1126/science.281.5373.99

    Article  CAS  PubMed  Google Scholar 

  22. Muller JE, Meyer F, Litsanov B, Kiefer P, Vorholt JA (2015) Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress. Mol Microbiol 98(6):1089–1100. https://doi.org/10.1111/mmi.13200

    Article  CAS  PubMed  Google Scholar 

  23. Stiller M (1962) The path of carbon in photosynthesis. Annu Rev Plant Physiol 13(1):151–170

    Article  CAS  Google Scholar 

  24. Erb TJ, Berg IA, Brecht V, Muller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 104(25):10631–10636. https://doi.org/10.1073/pnas.0702791104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci U S A 106(12):4846–4851. https://doi.org/10.1073/pnas.0810932106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192(14):3840–3841. https://doi.org/10.1128/JB.00506-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, Portais JC, Vorholt JA (2012) The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem 287(1):757–766. https://doi.org/10.1074/jbc.M111.305219

    Article  CAS  PubMed  Google Scholar 

  28. Kolb S (2009) Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett 300(1):1–10. https://doi.org/10.1111/j.1574-6968.2009.01681.x

    Article  CAS  PubMed  Google Scholar 

  29. Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York

    Google Scholar 

  30. Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T (2015) Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99(2):535–551. https://doi.org/10.1007/s00253-014-6224-3

    Article  CAS  PubMed  Google Scholar 

  31. Bennett RK, Gonzalez JE, Whitaker WB, Antoniewicz MR, Papoutsakis ET (2018) Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metab Eng 45:75–85. https://doi.org/10.1016/j.ymben.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  32. Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE (2010) Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50°C. Appl Microbiol Biotechnol 87 (3):951–964. https://doi.org/10.1007/s00253-010-2559-6

  33. Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE (2009) Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 75(3):652–661. https://doi.org/10.1128/AEM.01176-08

    Article  CAS  PubMed  Google Scholar 

  34. Markert B, Stolzenberger J, Brautaset T, Wendisch VF (2014) Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiol 14:7. https://doi.org/10.1186/1471-2180-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Naerdal I, Netzer R, Ellingsen TE, Brautaset T (2011) Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus. Appl Environ Microbiol 77(17):6020–6026. https://doi.org/10.1128/AEM.05093-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pfeifenschneider J, Markert B, Stolzenberger J, Brautaset T, Wendisch VF (2020) Transaldolase in Bacillus methanolicus: biochemical characterization and biological role in ribulose monophosphate cycle. BMC Microbiol 20(1). https://doi.org/10.1186/S12866-020-01750-6

  37. Stolzenberger J, Lindner SN, Persicke M, Brautaset T, Wendisch VF (2013) Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 195(22):5112–5122. https://doi.org/10.1128/JB.00672-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stolzenberger J, Lindner SN, Wendisch VF (2013) The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology 159(Pt 8):1770–1781. https://doi.org/10.1099/mic.0.067314-0

    Article  CAS  PubMed  Google Scholar 

  39. Irla M, Heggeset TM, Naerdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF (2016) Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Front Microbiol 7:1481. https://doi.org/10.3389/fmicb.2016.01481

    Article  PubMed  PubMed Central  Google Scholar 

  40. Delepine B, Lopez MG, Carnicer M, Vicente CM, Wendisch VF, Heux S (2020) Charting the metabolic landscape of the facultative methylotroph Bacillus methanolicus. Msystems 5:e00745–e00720. https://doi.org/10.1128/mSystems.00745-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Irla M, Neshat A, Brautaset T, Ruckert C, Kalinowski J, Wendisch VF (2015) Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics 16:73. https://doi.org/10.1186/s12864-015-1239-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopez MG, Irla M, Brito LF, Wendisch VF (2019) Characterization of D-Arabitol as newly discovered carbon source of Bacillus methanolicus. Front Microbiol 10:1725. https://doi.org/10.3389/fmicb.2019.01725

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schultenkamper K, Brito LF, Lopez MG, Brautaset T, Wendisch VF (2019) Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus. Appl Microbiol Biotechnol 103(14):5879–5889. https://doi.org/10.1007/s00253-019-09907-8

    Article  CAS  PubMed  Google Scholar 

  44. Kato K, Kurimura Y, Makiguchi N, Asai Y (1974) Determination of methanol strongly assimilating yeasts. J Gen Appl Microbiol 20(2):123–127. https://doi.org/10.2323/Jgam.20.123

    Article  Google Scholar 

  45. Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agr Biol Chem Tokyo 33(10):1519–1520. https://doi.org/10.1080/00021369.1969.10859497

    Article  CAS  Google Scholar 

  46. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54(6):741–750. https://doi.org/10.1007/s002530000464

    Article  CAS  PubMed  Google Scholar 

  47. Wegner GH (1990) Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev 7(3–4):279–283. https://doi.org/10.1111/j.1574-6968.1990.tb04925.x

    Article  CAS  PubMed  Google Scholar 

  48. Puxbaum V, Mattanovich D, Gasser B (2015) Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol 99(7):2925–2938. https://doi.org/10.1007/s00253-015-6470-z

    Article  CAS  PubMed  Google Scholar 

  49. Weinhandl K, Winkler M, Glieder A, Camattari A (2014) Carbon source dependent promoters in yeasts. Microb Cell Fact 13:5. https://doi.org/10.1186/1475-2859-13-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jorda J, de Jesus SS, Peltier S, Ferrer P, Albiol J (2014) Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids. N Biotechnol 31(1):120–132. https://doi.org/10.1016/j.nbt.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  51. Jungo C, Schenk J, Pasquier M, Marison IW, von Stockar U (2007) A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for the production of recombinant avidin with Pichia pastoris. J Biotechnol 131(1):57–66. https://doi.org/10.1016/j.jbiotec.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  52. Jorda J, Jouhten P, Camara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb Cell Fact 11:57. https://doi.org/10.1186/1475-2859-11-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33(6 Pt 2):1177–1193. https://doi.org/10.1016/j.biotechadv.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  54. Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141. https://doi.org/10.1186/1752-0509-4-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tomas-Gamisans M, Ferrer P, Albiol J (2016) Integration and validation of the genome-scale metabolic models of Pichia pastoris: a comprehensive update of protein glycosylation pathways, lipid and energy metabolism. PLoS One 11(1):e0148031. https://doi.org/10.1371/journal.pone.0148031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pena DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D (2018) Metabolic engineering of Pichia pastoris. Metab Eng 50:2–15. https://doi.org/10.1016/j.ymben.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  57. Fischer JE, Glieder A (2019) Current advances in engineering tools for Pichia pastoris. Curr Opin Biotechnol 59:175–181. https://doi.org/10.1016/j.copbio.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  58. Belanger L, Figueira MM, Bourque D, Morel L, Beland M, Laramee L, Groleau D, Miguez CB (2004) Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation. FEMS Microbiol Lett 231(2):197–204. https://doi.org/10.1016/S0378-1097(03)00956-X

    Article  CAS  PubMed  Google Scholar 

  59. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94(Pt 2):109–137. https://doi.org/10.3184/003685011X13044430633960

    Article  CAS  PubMed  Google Scholar 

  60. Peyraud R, Kiefer P, Christen P, Portais JC, Vorholt JA (2012) Co-consumption of methanol and succinate by Methylobacterium extorquens AM1. PLoS One 7(11):e48271. https://doi.org/10.1371/journal.pone.0048271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA (2015) Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol 99(2):517–534. https://doi.org/10.1007/s00253-014-6240-3

    Article  CAS  PubMed  Google Scholar 

  62. Grousseau E, Blanchet E, Deleris S, Albuquerque MG, Paul E, Uribelarrea JL (2013) Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator. Bioresour Technol 148:30–38. https://doi.org/10.1016/j.biortech.2013.08.120

    Article  CAS  PubMed  Google Scholar 

  63. Steinbuchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16(6):607–613. https://doi.org/10.1016/j.copbio.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  64. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24(10):1257–1262. https://doi.org/10.1038/nbt1244

    Article  PubMed  Google Scholar 

  65. Grunwald S, Mottet A, Grousseau E, Plassmeier JK, Popovic MK, Uribelarrea JL, Gorret N, Guillouet SE, Sinskey A (2015) Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures. J Microbial Biotechnol 8(1):155–163. https://doi.org/10.1111/1751-7915.12149

    Article  CAS  Google Scholar 

  66. Wu TY, Chen CT, Liu JT, Bogorad IW, Damoiseaux R, Liao JC (2016) Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Appl Microbiol Biotechnol 100(11):4969–4983. https://doi.org/10.1007/s00253-016-7320-3

    Article  CAS  PubMed  Google Scholar 

  67. Habibi A, Vahabzadeh F (2013) Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs. J Environ Sci Health A Tox Hazard Subst Environ Eng 48(3):279–292. https://doi.org/10.1080/10934529.2013.726829

    Article  CAS  PubMed  Google Scholar 

  68. Crepin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101. https://doi.org/10.1016/j.ymben.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  69. Park JM, Jang YS, Kim TY, Lee SY (2010) Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. FEMS Microbiol Lett 309(2):193–200. https://doi.org/10.1111/j.1574-6968.2010.02041.x

    Article  CAS  PubMed  Google Scholar 

  70. Bi C, Su P, Muller J, Yeh YC, Chhabra SR, Beller HR, Singer SW, Hillson NJ (2013) Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microb Cell Fact 12:107. https://doi.org/10.1186/1475-2859-12-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Claassens NJ, Bordanaba-Florit G, Cotton CAR, De Maria A, Finger-Bou M, Friedeheim L, Giner-Laguarda N, Munar-Palmer M, Newell W, Scarinci G, Verbunt J, de Vries ST, Yilmaz S, Bar-Even A (2020) Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng 62:30–41. https://doi.org/10.1016/j.ymben.2020.08.004

    Article  CAS  PubMed  Google Scholar 

  72. Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE (2007) Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50°C. Appl Microbiol Biotechnol 74 (1):22–34

    Google Scholar 

  73. Irla M, Naerdal I, Brautaset T, Wendisch VF (2017) Methanol-based gamma-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains. Ind Crop Prod 106:12–20. https://doi.org/10.1016/j.indcrop.2016.11.050

    Article  CAS  Google Scholar 

  74. Sonntag F, Muller JE, Kiefer P, Vorholt JA, Schrader J, Buchhaupt M (2015) High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains. Appl Microbiol Biotechnol 99(8):3407–3419. https://doi.org/10.1007/s00253-015-6418-3

    Article  CAS  PubMed  Google Scholar 

  75. Sonntag F, Buchhaupt M, Schrader J (2014) Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Appl Microbiol Biotechnol 98(10):4533–4544. https://doi.org/10.1007/s00253-013-5456-y

    Article  CAS  PubMed  Google Scholar 

  76. Liang WF, Cui LY, Cui JY, Yu KW, Yang S, Wang TM, Guan CG, Zhang C, Xing XH (2017) Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng 39:159–168. https://doi.org/10.1016/j.ymben.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  77. Hagishita T, Yoshida T, Izumi Y, Mitsunaga T (1996) Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Biosci Biotechnol Biochem 60(10):1604–1607. https://doi.org/10.1271/bbb.60.1604

    Article  CAS  PubMed  Google Scholar 

  78. Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC (2003) Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants. Appl Environ Microbiol 69(7):3986–3995. https://doi.org/10.1128/aem.69.7.3986-3995.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Motoyama H, Anazawa H, Katsumata R, Araki K, Teshiba S (1993) Amino acid production from methanol by Methylobacillus glycogenes mutants: isolation of L-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of L-threonine and L-lysine-producing mutants from them. Biosci Biotechnol Biochem 57(1):82–87. https://doi.org/10.1271/bbb.57.82

    Article  CAS  PubMed  Google Scholar 

  80. Motoyama H, Yano H, Terasaki Y, Anazawa H (2001) Overproduction of L-lysine from methanol by Methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene. Appl Environ Microbiol 67(7):3064–3070. https://doi.org/10.1128/AEM.67.7.3064-3070.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gunji Y, Yasueda H (2006) Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127(1):1–13. https://doi.org/10.1016/j.jbiotec.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  82. Zhang T, Ge C, Deng L, Tan T, Wang F (2015) C4-dicarboxylic acid production by overexpressing the reductive TCA pathway. FEMS Microbiol Lett 362(9). https://doi.org/10.1093/femsle/fnv052

  83. Yamada R, Ogura K, Kimoto Y, Ogino H (2019) Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris. World J Microbiol Biotechnol 35(2):37. https://doi.org/10.1007/s11274-019-2610-4

    Article  CAS  PubMed  Google Scholar 

  84. Lim CK, Villada JC, Chalifour A, Duran MF, Lu H, Lee PKH (2019) Designing and engineering Methylorubrum extorquens AM1 for itaconic acid production. Front Microbiol 10:1027. https://doi.org/10.3389/fmicb.2019.01027

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rohde MT, Tischer S, Harms H, Rohwerder T (2017) Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl coenzyme A-isomerizing enzymes. Appl Environ Microbiol 83(3). https://doi.org/10.1128/AEM.02622-16

  86. Yang YM, Chen WJ, Yang J, Zhou YM, Hu B, Zhang M, Zhu LP, Wang GY, Yang S (2017) Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb Cell Fact 16(1):179. https://doi.org/10.1186/s12934-017-0798-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Drejer EB, Chan DTC, Haupka C, Wendisch VF, Brautaset T, Irla M (2020) Methanol-based acetoin production by genetically engineered Bacillus methanolicus. Green Chem 22(3):788–802. https://doi.org/10.1039/c9gc03950c

    Article  CAS  Google Scholar 

  88. Hu B, Yang YM, Beck DA, Wang QW, Chen WJ, Yang J, Lidstrom ME, Yang S (2016) Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. Biotechnol Biofuels 9:84. https://doi.org/10.1186/s13068-016-0497-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sonntag F, Kroner C, Lubuta P, Peyraud R, Horst A, Buchhaupt M, Schrader J (2015) Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid alpha-humulene from methanol. Metab Eng 32:82–94. https://doi.org/10.1016/j.ymben.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  90. Hakvag S, Naerdal I, Heggeset TMB, Kristiansen KA, Aasen IM, Brautaset T (2020) Production of value-added chemicals by Bacillus methanolicus strains cultivated on mannitol and extracts of seaweed Saccharina latissima at 50°C. Front Microbiol 11:680. https://doi.org/10.3389/fmicb.2020.00680

  91. Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29. https://doi.org/10.1016/j.ymben.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  92. Liu Y, Tu X, Xu Q, Bai C, Kong C, Liu Q, Yu J, Peng Q, Zhou X, Zhang Y, Cai M (2018) Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol. Metab Eng 45:189–199. https://doi.org/10.1016/j.ymben.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  93. Gao L, Cai M, Shen W, Xiao S, Zhou X, Zhang Y (2013) Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production. Microb Cell Fact 12:77. https://doi.org/10.1186/1475-2859-12-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rice EA, Bannon GA, Glenn KC, Jeong SS, Sturman EJ, Rydel TJ (2008) Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein. Arch Biochem Biophys 480(2):111–121. https://doi.org/10.1016/j.abb.2008.09.018

    Article  CAS  PubMed  Google Scholar 

  95. Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22(5):815–826

    Article  CAS  Google Scholar 

  96. Lubitz D, Jorge JM, Perez-Garcia F, Taniguchi H, Wendisch VF (2016) Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol 100(19):8465–8474. https://doi.org/10.1007/s00253-016-7695-1

    Article  CAS  PubMed  Google Scholar 

  97. Naerdal I, Netzer R, Irla M, Krog A, Heggeset TM, Wendisch VF, Brautaset T (2017) L-lysine production by Bacillus methanolicus: genome-based mutational analysis and L-lysine secretion engineering. J Biotechnol 244:25–33. https://doi.org/10.1016/j.jbiotec.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  98. Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015) Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. J Microbial Biotechnol 8(2):342–350. https://doi.org/10.1111/1751-7915.12257

    Article  CAS  Google Scholar 

  99. Hu B, Lidstrom ME (2014) Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnol Biofuels 7(1):156. https://doi.org/10.1186/s13068-014-0156-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Khosravi Darani K (2009) Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour Technol 100(8):2436–2443. https://doi.org/10.1016/j.biortech.2008.11.024

    Article  CAS  PubMed  Google Scholar 

  101. Bourque D, Pomerleau Y, Groleau D (1995) High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44:367–376. https://doi.org/10.1007/BF00169931

    Article  CAS  Google Scholar 

  102. Hofer P, Choi YJ, Osborne MJ, Miguez CB, Vermette P, Groleau D (2010) Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains. Microb Cell Fact 9:70. https://doi.org/10.1186/1475-2859-9-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cal AJ, Sikkema WD, Ponce MI, Franqui-Villanueva D, Riiff TJ, Orts WJ, Pieja AJ, Lee CC (2016) Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int J Biol Macromol 87:302–307. https://doi.org/10.1016/j.ijbiomac.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  104. Drejer EB, Hakvag S, Irla M, Brautaset T (2018) Genetic tools and techniques for recombinant expression in thermophilic Bacillaceae. Microorganisms 6(2):42. https://doi.org/10.3390/microorganisms6020042

    Article  CAS  PubMed Central  Google Scholar 

  105. Nilasari D, Dover N, Rech S, Komives C (2012) Expression of recombinant green fluorescent protein in Bacillus methanolicus. Biotechnol Prog 28(3):662–668. https://doi.org/10.1002/btpr.1522

    Article  CAS  PubMed  Google Scholar 

  106. Irla M, Drejer EB, Brautaset T, Hakvag S (2020) Establishment of a functional system for recombinant production of secreted proteins at 50°C in the thermophilic Bacillus methanolicus. Microb Cell Fact 19(1):151. https://doi.org/10.1186/s12934-020-01409-x

  107. Matassa S, Boon N, Pikaar I, Verstraete W (2016) Microbial protein: future sustainable food supply route with low environmental footprint. J Microbial Biotechnol 9(5):568–575. https://doi.org/10.1111/1751-7915.12369

    Article  Google Scholar 

  108. Kellershohn J, Russel I (2015) Yeast biotechnology. In: Ravishankar Rai V (ed) Advances in food biotechnology. Wiley, New York. ISBN:9781118864463. https://doi.org/10.1002/9781118864463, pp 303–310

  109. Linder T (2019) Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur 11 (2):265–278. doi:https://doi.org/10.1007/s12571-019-00912-3

  110. Gutierrez J, Bourque D, Criado R, Choi YJ, Cintas LM, Hernandez PE, Miguez CB (2005) Heterologous extracellular production of enterocin P from Enterococcus faecium P13 in the methylotrophic bacterium Methylobacterium extorquens. FEMS Microbiol Lett 248(1):125–131. https://doi.org/10.1016/j.femsle.2005.05.029

    Article  CAS  PubMed  Google Scholar 

  111. Choi YJ, Gringorten JL, Belanger L, Morel L, Bourque D, Masson L, Groleau D, Miguez CB (2008) Production of an insecticidal crystal protein from Bacillus thuringiensis by the methylotroph Methylobacterium extorquens. Appl Environ Microbiol 74(16):5178–5182. https://doi.org/10.1128/AEM.00598-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Frazao CJR, Walther T (2020) Syngas and methanol-based biorefinery concepts. Chem-Ing-Tech 92(11):1680–1699. https://doi.org/10.1002/cite.202000108

    Article  CAS  Google Scholar 

  113. Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27(2):107–115. https://doi.org/10.1016/j.tibtech.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  114. Lee GH, Hur W, Bremmon CE, Flickinger MC (1996) Lysine production from methanol at 50°C using Bacillus methanolicus: modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation. Biotechnol Bioeng 49(6):639–653. https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<639::AID-BIT5>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  115. Windass JD, Worsey MJ, Pioli EM, Pioli D, Barth PT, Atherton KT, Dart EC, Byrom D, Powell K, Senior PJ (1980) Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature 287(5781):396–401. https://doi.org/10.1038/287396a0

    Article  CAS  PubMed  Google Scholar 

  116. Kim P, Kim JH, Oh DK (2003) Improvement in cell yield of Methylobacterium sp. by reducing the inhibition of medium components for poly-β-hydroxybutyrate production. World J Microbiol Biotechnol 19. https://doi.org/10.1023/A:1023969629568

  117. Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A (2019) Making quantitative sense of electromicrobial production. Nat Catal 2(5):437–447. https://doi.org/10.1038/s41929-019-0272-0

    Article  CAS  Google Scholar 

  118. Zhu WL, Cui JY, Cui LY, Liang WF, Yang S, Zhang C, Xing XH (2016) Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Appl Microbiol Biotechnol 100(5):2171–2182. https://doi.org/10.1007/s00253-015-7078-z

    Article  CAS  PubMed  Google Scholar 

  119. Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-beta-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18(1):25–30. https://doi.org/10.1007/Bf00137805

    Article  CAS  Google Scholar 

  120. Zhao SJ, Fan CY, Hu X, Chen JR, Feng HF (1993) The microbial production of polyhydroxybutyrate from methanol. Appl Biochem Biotechnol 39:191–199. https://doi.org/10.1007/Bf02918989

    Article  Google Scholar 

  121. Oh D-K, Kim S-Y, Kim J-H (1996) Production of a polysaccharide, methylan, in Methylobacterium organophilum by controlling ammonium ion. Biotechnol Lett 18:1427–1430

    Article  CAS  Google Scholar 

  122. Al-Awadhi N, Egli T, Hamer G, Mason CA (1990) The process utility of thermotolerant methylotrophic bacteria: I. an evaluation in chemostat culture. Biotechnol Bioeng 36(8):816–820. https://doi.org/10.1002/bit.260360810

    Article  CAS  PubMed  Google Scholar 

  123. Schenk J, Marison IW, von Stockar U (2007) A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J Biotechnol 128(2):344–353. https://doi.org/10.1016/j.jbiotec.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  124. Ramon R, Feliu JX, Cos O, Montesinos JL, Berthet FX, Valero F (2004) Improving the monitoring of methanol concentration during high cell density fermentation of Pichia pastoris. Biotechnol Lett 26(18):1447–1452. https://doi.org/10.1023/B:BILE.0000045649.60508.c5

    Article  CAS  PubMed  Google Scholar 

  125. Chongchittapiban P, Borg J, Waiprip Y, Pimsamarn J, Tongta A (2016) On-line methanol sensor system development for recombinant human serum albumin production by Pichia pastoris. Afr J Biotechnol 15(42):2374–2383. https://doi.org/10.5897/AJB2015.15122

    Article  CAS  Google Scholar 

  126. Jakobsen OM, Benichou A, Flickinger MC, Valla S, Ellingsen TE, Brautaset T (2006) Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. J Bacteriol 188(8):3063–3072. https://doi.org/10.1128/JB.188.8.3063-3072.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Solomons GL, Litchfield JH (1983) Single cell protein. Crit Rev Biotechnol 1(1):21–58. https://doi.org/10.3109/07388558309082578

    Article  CAS  Google Scholar 

  128. Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M (2018) Current advance in bioconversion of methanol to chemicals. Biotechnol Biofuels 11:260. https://doi.org/10.1186/s13068-018-1265-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Urakami T, Terao I, Nagai I (1986) Production of single cell protein by methanol-using bacteria. Hakkokogaku Kaishi 64(2):99–114

    CAS  Google Scholar 

  130. Taniguchi H, Okano K, Honda K (2017) Modules for in vitro metabolic engineering: pathway assembly for bio-based production of value-added chemicals. Synth Syst Biotechnol 2(2):65–74. https://doi.org/10.1016/j.synbio.2017.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  131. Okano K, Sato Y, Inoue S, Kawakami S, Kitani S, Honda K (2020) Enhancement of S-adenosylmethionine-dependent methylation by integrating methanol metabolism with 5-methyl-tetrahydrofolate formation in Escherichia coli. Catalysts 10(9). https://doi.org/10.3390/Catal10091001

  132. Gassler T, Heistinger L, Mattanovich D, Gasser B, Prielhofer R (2019) CRISPR/Cas9-mediated homology-directed genome editing in Pichia pastoris. Methods Mol Biol 1923:211–225. https://doi.org/10.1007/978-1-4939-9024-5_9

    Article  CAS  PubMed  Google Scholar 

  133. Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, Hann S, Mattanovich D, Steiger MG (2020) The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol 38(2):210–216. https://doi.org/10.1038/s41587-019-0363-0

    Article  CAS  PubMed  Google Scholar 

  134. Carrillo M, Wagner M, Petit F, Dransfeld A, Becker A, Erb TJ (2019) Design and control of extrachromosomal elements in Methylorubrum extorquens AM1. ACS Synth Biol 8(11):2451–2456. https://doi.org/10.1021/acssynbio.9b00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rohles CM, Giesselmann G, Kohlstedt M, Wittmann C, Becker J (2016) Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb Cell Fact 15(1):154. https://doi.org/10.1186/s12934-016-0553-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM (2019) The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 56:1–16. https://doi.org/10.1016/j.ymben.2019.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hennig G, Haupka C, Brito LF, Ruckert C, Cahoreau E, Heux S, Wendisch VF (2020) Methanol-essential growth of Corynebacterium glutamicum: adaptive laboratory evolution overcomes limitation due to methanethiol assimilation pathway. Int J Mol Sci 21(10). https://doi.org/10.3390/Ijms21103617

  138. Lessmeier L, Wendisch VF (2015) Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol 15:216. https://doi.org/10.1186/s12866-015-0558-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stella RG, Wiechert J, Noack S, Frunzke J (2019) Evolutionary engineering of Corynebacterium glutamicum. Biotechnol J 14(9):e1800444. https://doi.org/10.1002/biot.201800444

    Article  CAS  PubMed  Google Scholar 

  140. Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M (2015) Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 81(7):2284–2298. https://doi.org/10.1128/AEM.03973-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Perez-Garcia F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF (2018) Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Front Microbiol 9:2589. https://doi.org/10.3389/fmicb.2018.02589

    Article  PubMed  PubMed Central  Google Scholar 

  142. Prell C, Burgardt A, Meyer F, Wendisch VF (2020) Fermentative production of L-2-hydroxyglutarate by engineered Corynebacterium glutamicum via pathway extension of L-lysine biosynthesis. Front Bioeng Biotechnol 8:630476. https://doi.org/10.3389/fbioe.2020.630476

    Article  PubMed  Google Scholar 

  143. Haupka C, Delepine B, Irla M, Heux S, Wendisch VF (2020) Flux enforcement for fermentative production of 5-aminovalerate and glutarate by Corynebacterium glutamicum. Catalysts 10(9). https://doi.org/10.3390/Catal10091065

  144. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  145. Carlstrom CI, Field CM, Bortfeld-Miller M, Muller B, Sunagawa S, Vorholt JA (2019) Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol Evol 3(10):1445–1454. https://doi.org/10.1038/s41559-019-0994-z

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10(4):e1004283. https://doi.org/10.1371/journal.pgen.1004283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sgobba E, Wendisch VF (2020) Synthetic microbial consortia for small molecule production. Curr Opin Biotechnol 62:72–79. https://doi.org/10.1016/j.copbio.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  148. Perez-Garcia F, Burgardt A, Kallman DR, Wendisch VF, Bar N (2021) Dynamic co-cultivation process of Corynebacterium glutamicum strains for the fermentative production of riboflavin. Fermentation 7:11. https://doi.org/10.3390/fermentation7010011

    Article  CAS  Google Scholar 

  149. Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF (2018) Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose. Bioresour Technol 260:302–310. https://doi.org/10.1016/j.biortech.2018.03.113

    Article  CAS  PubMed  Google Scholar 

  150. Vortmann M, Stumpf AK, Sgobba E, Dirks-Hofmeister ME, Krehenbrink M, Wendisch VF, Philipp B, Moerschbacher BM (2021) A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine. Appl Microbiol Biotechnol 105:1547–1561. https://doi.org/10.1007/s00253-021-11112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dobroth ZT, Hu S, Coats ER, McDonald AG (2011) Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresour Technol 102(3):3352–3359. https://doi.org/10.1016/j.biortech.2010.11.053

    Article  CAS  PubMed  Google Scholar 

  152. Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA, Koffas MAG (2017) Complete biosynthesis of anthocyanins using E. coli polycultures. MBio 8(3). https://doi.org/10.1128/mBio.00621-17

  153. Henke NA, Wiebe D, Perez-Garcia F, Peters-Wendisch P, Wendisch VF (2018) Coproduction of cell-bound and secreted value-added compounds: simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresour Technol 247:744–752. https://doi.org/10.1016/j.biortech.2017.09.167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendisch, V.F., Kosec, G., Heux, S., Brautaset, T. (2021). Aerobic Utilization of Methanol for Microbial Growth and Production. In: Zeng, AP., Claassens, N.J. (eds) One-Carbon Feedstocks for Sustainable Bioproduction. Advances in Biochemical Engineering/Biotechnology, vol 180. Springer, Cham. https://doi.org/10.1007/10_2021_177

Download citation

Publish with us

Policies and ethics