Skip to main content
Log in

Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Act:

Actinorhodin

att/int:

Attachment/integration

AmR:

Apramycin resistance or resistance gene

Ant:

Antimycin

AUD:

Amplifiable unit of DNA

Ave:

Avermectin

Blm:

Bleomycin

CDA:

Calcium-dependent antibiotic

CDS:

Protein coding sequence

Cdn:

Candicidin

Cch:

Coelichelin

Cml:

Chloramphenicol

Cpk:

Coelimycin

Erm:

Erythromycin

ermEp*:

Strong constitutive promoter derived from the ermE gene

FAS:

Fatty acid synthase

Fdm:

Fredericamycin

LAL:

Large ATP-binding regulator of the LuxR family

Kin:

Kinamycin

Nat:

Natamycin

Net:

Netropsin (congocidin)

Nys:

Nystatin

NRP:

Nonribosomal peptide

NRPS:

Nonribosomal peptide synthetase

Olm:

Oligomycin

PAS:

Signaling domain of regulatory protein

Pim:

Pimaricin

PK:

Polyketide

PKS:

Polyketide synthase

Pte:

Filipin

PPTase:

Phosphopantetheinyl transferase

PTM:

Polycyclic tetramate macrolactam

Red:

Undecylprodigiosyn

Rap:

Rapamycin

Rif:

Rifampicin or rifamycin

RifR:

Rifampicin resistant

RiPP:

Ribosomally synthesized and post-translationally modified peptide

SARP:

Streptomyces antibiotic regulatory protein

SM:

Secondary metabolite

SMGC:

Secondary metabolite gene cluster

SpcR:

Spectinomycin resistant

Srm:

Spiramycin

Stm:

Stambomycin

Str:

Streptomycin

StrR:

Streptomycin resistant

TIR:

Terminal inverted repeat

Tpn:

Teicoplanin

ts:

Temperature sensitive

Tsr:

Thiostrepton

Tyl:

Tylosin

References

  1. Aigle B, Pang X, Decaris B, Leblond P (2005) Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. J Bacteriol 187:2491–2500

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet J-L (2014) Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 41:251–264

    Article  PubMed  CAS  Google Scholar 

  3. Alduina R, Gallo G (2012) Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 2012:462049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Alexander DC, Rock J, He X, Miao V, Brian P, Baltz RH (2010) Development of genetic system for lipopeptide combinatorial biosynthesis in Streptomyces fradiae and heterologous expression of the A54145 biosynthetic gene cluster. Appl Environ Microbiol 76:6877–6887

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Allenby NE, Laing E, Bucca G, Kierzek AM, Smith CP (2012) Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucl Acids Res 40:9543–9556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Antón N, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    Article  PubMed  CAS  Google Scholar 

  8. Aparicio JF, Fouces R, Mendes MV, Olivera N, Martín JF (2000) A complex multienzyme system encoded by five polyketide synthase genes involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem Biol 7:895–905

    Article  PubMed  CAS  Google Scholar 

  9. Arrand JR, Myers PA, Roberts RJ (1978) A new restriction endonuclease from Streptomyces albus G. J Mol Biol 118:127–135

    Article  PubMed  CAS  Google Scholar 

  10. Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Baltz RH (1986) Mutagenesis in Streptomyces. In: Demain AL, Soloman NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 184–190

    Google Scholar 

  12. Baltz RH (1997) Molecular genetic approaches to yield improvement in actinomycetes. Drug Pharm Sci 82:49–62

    Article  CAS  Google Scholar 

  13. Baltz RH (1998) New genetic methods to improve secondary metabolite production in Streptomyces. J Ind Microbiol Biotechnol 20:360–363

    Article  CAS  Google Scholar 

  14. Baltz RH (2001) Genetic methods and strategies for secondary metabolite yield improvement in actinomycetes. Antonie Van Leeuwenhoek 79:251–259

    Article  PubMed  CAS  Google Scholar 

  15. Baltz RH (2005) Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? SIM News 55:186–196

    Google Scholar 

  16. Baltz RH (2006) Marcel faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513

    Article  PubMed  CAS  Google Scholar 

  17. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  PubMed  CAS  Google Scholar 

  18. Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772

    Article  PubMed  CAS  Google Scholar 

  19. Baltz RH (2010) Genomics and the ancient origins of the daptomycin biosynthetic gene cluster. J Antibiot 63:506–511

    Article  PubMed  CAS  Google Scholar 

  20. Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38:657–666

    Article  PubMed  CAS  Google Scholar 

  21. Baltz RH (2011) Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J Ind Microbiol Biotechnol 38:1747–1760

    Article  PubMed  CAS  Google Scholar 

  22. Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672

    Article  PubMed  CAS  Google Scholar 

  23. Baltz RH (2014) MbtH homology codes to identify gifted microbes for genome mining. J Ind Microbiol Biotechnol 41:357–369

    Article  PubMed  CAS  Google Scholar 

  24. Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–759

    Article  PubMed  CAS  Google Scholar 

  25. Baltz RH (2014) Spontaneous and induced mutations to rifampicin, streptomycin, and spectinomycin resistances in actinomycetes: mutagenic mechanisms and applications for strain improvement. J Antibiot 67:619–624

    Article  PubMed  CAS  Google Scholar 

  26. Baltz RH, Matsushima P (1981) Protoplast fusion in Streptomyces: conditions for efficient genetic recombination and cell regeneration. J Gen Microbiol 127:137–146

    PubMed  CAS  Google Scholar 

  27. Baltz RH, Seno ET (1981) Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob Agents Chemother 20:214–225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Baltz RH, Hahn DH, McHenney MA, Solenberg PJ (1992) Transposition of Tn5096 and related transposons in Streptomyces. Gene 115:61–65

    Article  PubMed  CAS  Google Scholar 

  29. Banek JJ, Craig JW, Calle PY, Brady SF (2010) Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. J Am Chem Soc 132:15661–15670

    Article  CAS  Google Scholar 

  30. Baranasic D, Gacesa R, Starcevic A et al (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1:e00581–e00613

    Article  PubMed Central  PubMed  Google Scholar 

  31. Barreiro C, Prieto C, Sola-Landa A et al (2012) Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506). J Bacteriol 194:3756–3757

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Bekker OB, Klimina KM, Vatlin AA, Zakharevich NV, Kasianov AS, Danilenko VN (2014) Draft genome sequence of Streptomyces fradiae ATCC 19609, a strain highly sensitive to antibiotics. Genome Announc 2:e01247–e01314

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bibb MJ (2013) Understanding and manipulating antibiotic production in actinomycetes. Biochem Soc Trans 41:1355–1364

    Article  PubMed  CAS  Google Scholar 

  34. Bibb MJ, Hesketh A (2009) Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol 458:93–116

    Article  PubMed  CAS  Google Scholar 

  35. Bibb MJ, White J, Ward JM, Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545

    Article  PubMed  CAS  Google Scholar 

  36. Bibb MJ, Domonkos A, Chandra G, Buttner MJ (2012) Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate anti-sigma factor, RsbN. Mol Microbiol 84:1033–1049

    Article  PubMed  CAS  Google Scholar 

  37. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  38. Bilyk B, Luzhetskyy A (2014) Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol 98:5096–5104

    Article  CAS  Google Scholar 

  39. Bilyk B, Weber S, Myronovskyi M, Bilyk O, Luzhetskyy A (2013) In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol 97:351–359

    Article  PubMed  CAS  Google Scholar 

  40. Blodgett JA, Zhang JK, Metcalf WW (2005) Molecular cloning, sequence analysis, and heterologous expression of the phosphinothricin tripeptide biosynthetic gene cluster from Streptomyces viridochromogenes DSM 40736. Antimicrob Agents Chemother 49:230–240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Boddy CN (2014) Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J Ind Microbiol Biotechnol 41:443–450

    Article  PubMed  CAS  Google Scholar 

  42. Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    Article  PubMed  CAS  Google Scholar 

  43. Bunet R, Song L, Vaz Mende M et al (2011) Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J Bacteriol 193:1142–1153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Bunet R, Riclea R, Laureti L et al (2014) A single Sfp-type phosphopantetheinyl transferase plays a major role in the biosynthesis of PKS and NRPS derived metabolites in Streptomyces ambofaciens ATCC23877. PLoS One 9:e87607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ (2013) Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. mBio 4:e00684–e00713

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Byrne SM, Mali P, Church GM (2014) Genome editing in human stem cells. Methods Enzymol 546:119–138

    Article  PubMed Central  PubMed  Google Scholar 

  47. Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M (2001) Amphotericin biosynthesis in Streptomyces nodusus: deductions from analysis of polyketide synthase and late genes. Chem Biol 8:713–723

    Article  PubMed  CAS  Google Scholar 

  48. Carata E, Peano C, Tredici SM, Ferrari F, Talá A, Corti G, Bicciato S, De Bellis G, Alifano P (2009) Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact 8:18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH (2010) Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307–9. ChemBioChem 11:564–572

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Challis GL (2014) Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41:219–232

    Article  PubMed  CAS  Google Scholar 

  51. Charlop-Powers Z, Milshteyn A, Brady SF (2014) Metagenomic small molecule discovery methods. Curr Opin Microbiol 19:70–75

    Article  PubMed  CAS  Google Scholar 

  52. Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimaraes DO, de Frias UA, Pupo MT, Seepe P, Feng Z, Brady SF (2015) Global biogeographic sampling of bacterial secondary metabolism. eLife. doi:10.7554/eLife.05048

    PubMed  Google Scholar 

  53. Chater KF, Wilde LC (1976) Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI. J Bacteriol 128:644–650

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Chater KF, Wilde LC (1980) Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol 116:323–334

    PubMed  CAS  Google Scholar 

  55. Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “omics” based engineering of streptomycetes for secondary metabolite overproduction. BioMed Res Int 2013:968518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Chen S, Huang X, Zhou X, Bai L, He J, Jeong KJ, Lee SY, Deng Z (2003) Organization and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10:1065–1076

    Article  PubMed  CAS  Google Scholar 

  57. Chen W, Qi J, Wu P, Wan D, Liu J, Feng X, Deng Z (2015) Natural and engineered biosynthesis of nucleoside antibiotics in actinomycetes. J Ind Microbiol Biotechnol. doi:10.1007/s10295-015-1636-3

    Google Scholar 

  58. Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86:19–25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Chng C, Lum AM, Vroom A, Kao CM (2008) A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Proc Nat Acad Sci USA 105:11346–11351

    Article  PubMed Central  PubMed  Google Scholar 

  60. Choulet F, Aigle B, Gallois A et al (2006) Evolution of the terminal regions of the Streptomyces linear chromosome. Mol Biol Evol 23:2361–2369

    Article  PubMed  CAS  Google Scholar 

  61. Choulet F, Gallois A, Aigle B et al (2006) Intraspecific variability of the terminal inverted repeats af the linear chromosome of Streptomyces ambofaciens. J Bacteriol 188:6599–6610

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Cobb RE, Ning JC, Zhao H (2014) DNA assembly techniques for next-generation combinatorial biosyhthesis of natural products. J Ind Microbiol Biotechnol 41:469–477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Cox KL, Baltz RH (1984) Restriction of bacteriophage plaque formation in Streptomyces spp. J Bacteriol 159:499–504

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Cox RJ, Crosby J, Daltrop O et al (2002) Streptomyces coelicolor phosphopantetheinyl transferase: a promiscuous activator of polyketide and fatty acid synthase acyl carrier proteins. J Chem Soc Perkin Trans 1:644–1649

    Google Scholar 

  66. Crump MP, Dempsey CE, Parkinson JA, Murray M, Hopwood DA, Simpson TJ (1997) Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2). Biochemistry 36:6000–6008

    Article  PubMed  CAS  Google Scholar 

  67. Cundliffe E (2008) Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol 18:1485–1491

    PubMed  CAS  Google Scholar 

  68. Dangel V, Westrich L, Smith MCM, Heide L, Gust B (2010) Use of an inducible promoter for antibiotic production in a heterologous host. Appl Microbiol Biotechnol 87:261–269

    Article  PubMed  CAS  Google Scholar 

  69. de Oliveira LG, Tormet Gonzalez GD, Samborsky M, Marcon J, Araujo WL, de Azevedo JL (2014) Genome sequence of Streptomyces wadayamensis strain A23, an endophytic actinobacterium from Citrus reticulate. Genome Announc 2:e00625–e00714

    PubMed Central  PubMed  Google Scholar 

  70. Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41:185–201

    Article  PubMed  CAS  Google Scholar 

  71. Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO (2013) Antimicrobial drug resistance affects broad changes in metabolic phenotype in addition to secondary metabolism. Proc Nat Acad Sci USA 110:2336–2341

    Article  PubMed Central  PubMed  Google Scholar 

  72. Du D, Wang L, Tian Y, Liu H, Tan H, Niu G (2015) Genome engineering and direct cloning of antibiotic gene clusters via phage φBT1 integrase-mediated site-specific recombination in Streptomyces. Sci Rep 5:8740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Du YL, Chen SF, Cheng LY, Shen XL, Tian Y, Li YQ (2009) Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. J Microbiol 47:506–513

    Article  PubMed  CAS  Google Scholar 

  74. Dutta S, Whicher JR, Hansen DA et al (2014) Structure of a modular polyketide synthase. Nature 510:512–517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Fayed B, Younger E, Taylor G, Smith MC (2014) A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1. BMC Biotechnol 14:51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Felnagle EA, Rondon MR, Berti AD, Crosby HA, Thomas MG (2007) Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin. Appl Environ Microbiol 73:4162–4170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Feng Z, Wang L, Rajski SR, Xu Z, Coeffet-LeGal MF, Shen B (2009) Engineered production of iso-migrastatin in heterologous Streptomyces hosts. Bioorg Med Chem 17:2147–2153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Fernández-Martínez LT, Bibb MJ (2014) Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci Rep 4:7100

    Article  PubMed Central  PubMed  Google Scholar 

  79. Fernández-Martínez LT, Borsetto C, Gomez-Escribano JP, Bibb MJ, Al-Bassam MM, Chandra G, Bibb MJ (2014) New insights into chloramphenicol biosynthesis in Streptomyce venezuelae ATCC 10712. Antimicrob Agents Chemother 58:7441–7450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Fischbach MJ, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotcs: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  PubMed  CAS  Google Scholar 

  81. Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM (2014) New applications for phage integrases. J Mol Biol 426:2703–2716

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Ford LM, Eaton TE, Godfrey OW (1990) Selection of Streptomyces ambofaciens mutants that produce large amounts of spiramycin and determination of optimal conditions for spiramycin production. Appl Environ Microbiol 56:3511–3514

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Galm U, Wendt-Pienkowski E, Wang L et al (2011) Comparative analysis of the biosynthetic gene clusters and pathways for three structurally related antitumor antibiotics: bleomycin, tallysomycin, and zorbamycin. J Nat Prod 74:526–536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Garibyan L, Huang T, Kim M et al (2003) Use of the rpoB gene to determine the specificity of base substitutions on the Escherichai coli chromosome. DNA Repair 2:593–608

    Article  PubMed  CAS  Google Scholar 

  85. Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol Microbiol 6:2019–2029

    Article  PubMed  CAS  Google Scholar 

  86. Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41:425–431

    Article  PubMed  CAS  Google Scholar 

  88. Hahn DR, Solenberg PJ, Baltz RH (1991) Tn5099, a xylE promoter probe transposon for Streptomyces spp. J Bacteriol 173:5573–5577

    PubMed Central  PubMed  CAS  Google Scholar 

  89. He X, Miao V, Baltz RH (2005) Spectinomycin resistance in rpsE mutants is recessive in Streptomyces roseosporus. J Antibiot 58:284–288

    Article  PubMed  CAS  Google Scholar 

  90. Helfrich EJN, Reiter S, Piel J (2014) Recent advances in genome-based polyketide discovery. Curr Opin Biotechnol 29:107–115

    Article  PubMed  CAS  Google Scholar 

  91. Herrmann S, Siegl T, Luzhetska M et al (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78:1804–1812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Horbal L, Kobylyanskyy A, Truman AW, Zaburranyi N, Osrash B, Luzhetskyy A, Marinelli F, Federenko V (2014) The pathway-specific regulatory genes, tei15 and tei16, are the master switches of teicoplaninn production in Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 98:9295–9309

    Article  PubMed  CAS  Google Scholar 

  93. Horbal L, Federenko V, Luzhetskyy A (2014) Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinomycetes. Appl Microbiol Biotechnol 98:8641–8655

    Article  PubMed  CAS  Google Scholar 

  94. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464

    Article  PubMed  CAS  Google Scholar 

  95. Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243

    Article  PubMed  Google Scholar 

  96. Huang Y, Wendt-Pienkowski E, Shen B (2006) A dedicated phosphopantetheinyl transferase for the fredericamycin polyketide synthase from Streptomyces griseus. J Biol Chem 281:29660–29668

    Article  PubMed  CAS  Google Scholar 

  97. Ian E, Malko DB, Sekurova ON, Bredholt H, Rückert C, Borisova ME, Albersmeier A, Kalinowski J, Gelfand MS, Zotchev SB (2014) Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential. PLoS One 9:e96719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Ikeda H, Nonomiya T, Ōmura S (2001) Organization of the biosynthetic gene cluster for avermectin in Streptomyces avermitilis: analysis of enzymatic domains in four polyketide synthases. J Ind Microbiol Biotechnol 27:170–176

    Article  PubMed  CAS  Google Scholar 

  99. Ikeda H, Shin-ya K, Ōmura S (2014) Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 41:233–250

    Article  PubMed  CAS  Google Scholar 

  100. Jiang H, Wang YY, Ran XX, Fan WM, Jiang XH, Li YQ (2013) Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10. Appl Environ Microbiol 79:3346–3354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) CRISPR-assisted editing of bacterial genomes. Nat Biotechnol 31:233–239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Jones AC, Gust B, Kulik A, Heide L, Butner MJ, Bibb MJ (2013) Phage P1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8:e69319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Kallifidas D, Kang HS, Brady SF (2012) Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Am Chem Soc 134:19552–19555

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Karry F, Darbon E, Nguyen HC, Gagnat J, Pernodet JL (2010) Regulation of the biosynthesis of the macrolide antibiotic spiramycin in Streptomyces ambofaciens. J Bacteriol 192:5813–5821

    Article  CAS  Google Scholar 

  105. Keller U, Lang M, Crnovic I, Pfennig F, Schauwecker F (2010) The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J Bacteriol 192:2583–2595

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  107. Kim HJ, Kim MK, Jin YY, Kim ES (2014) Effect of antibiotic down-regulatory gene wblA ortholog on antifungal polyene production in rare actinomycete Pseudonocardia autotrophica. J Microbiol Biotechnol 24:1226–1231

    Article  PubMed  CAS  Google Scholar 

  108. Kirm B, Magdevska V, Tome M et al (2013) SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea. Microb Cell Fact 12:126

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Komatsu M, Uchiyama T, Ōmura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Nat Acad Sci USA 107:2646–2651

    Article  PubMed Central  PubMed  Google Scholar 

  110. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, M Izumikawa, Hashimoto J, Takagi M, Ōmura S, Shin-ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Khosla C, Hershlag D, Cane DE, Walsh CT (2014) Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 53:2875–2883

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Kwun MJ, Hong HJ (2014) Genome sequence of Streptomyces toyocaensis NRRL 15009, producer of the glycopeptide antibiotic A47934. Genome Announc 2:e01247–e01314

    Google Scholar 

  113. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Nat Acad Sci USA 108:6258–6263

    Article  PubMed Central  PubMed  Google Scholar 

  114. Li C, Hazzard C, Florova G, Reynolds KA (2009) High titer expression of tetracenomycin by heterologous expression of the pathway in a Streptomyces cinnamonensis industrial monensin producer strain. Metab Eng 11:319–327

    Article  PubMed  CAS  Google Scholar 

  115. Li L, Guo J, Wen Y, Chen Z, Song Y, Li J (2010) Overproduction of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol 37:673–679

    Article  PubMed  CAS  Google Scholar 

  116. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microb Mol Biol 77:112–143

    Article  CAS  Google Scholar 

  117. Liu WT, Kersten RD, Yang YL, Moore BS, Dorrestein PC (2011) Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J Am Chem Soc 133:18010–18013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Lopatniuk M, Ostach B, Luzhetskyy A, Walker S, Federenko V (2014) Generation and study of the strains of streptomycetes—heterologous hosts for the production of moenomycin. Russ J Genet 50:413–419

    Article  CAS  Google Scholar 

  119. Lu YW, San Roman AK, Gehring AM (2008) Role of phosphopantetheinyl transferase genes in antibiotic production in Streptomyces coelicolor. J Bacteriol 190:6903–6908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Lum AM, Huang J, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 6:186–196

    Article  PubMed  CAS  Google Scholar 

  121. Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 4:2894

    PubMed Central  PubMed  Google Scholar 

  122. Luo Y, Zhang L, Barton KW, Zhao H (2015) Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol. doi:10.1021/acssynbio.5b00016

    Google Scholar 

  123. Magarvey NA, Haltli B, He M, Greenstein M, Hucul JA (2006) Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob Agents Chemother 50:2167–2177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Makitrynskyy R, Rebets Y, Ostash B, Zaburannyl N, Rabyk M, Walker S, Federenko V (2010) Genetic factors that influence moenomycin production in streptomycetes. J Ind Microbiol Biotechnol 37:559–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Martin JF, Aparicio JF (2009) Enzymology of the polyenes pimaricin and candicidin biosynthesis. Methods Enzymol 459:215–242

    Article  PubMed  CAS  Google Scholar 

  127. Mast Y, Weber T, Golz M, Ort-Winklbauer R, Gondran A, Wohlleben W, Schinko E (2011) Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis. Microb Biotechnol 4:192–206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Matsushima P, Baltz RH (1986) Protoplast fusion. In: Demain AL, Soloman NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 170–183

    Google Scholar 

  129. Matsushima P, Baltz RH (1996) A gene cloning system for ‘Streptomyces toyocaensis’. Microbiology 142:261–267

    Article  PubMed  CAS  Google Scholar 

  130. McHenney MA, Baltz RH (1996) Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. Microbiology 142:2363–2373

    Article  PubMed  CAS  Google Scholar 

  131. Medema MH, Alam MT, Heijne WHM, van den Berg MA, Muller U, Trefzer A, Bovenberg RAL, Breitling R, Takano E (2011) Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. Microb Biotechnol 4:300–305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA (2014) A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput Biol 10:e1004016

    Article  PubMed Central  PubMed  Google Scholar 

  133. Miao V, Coeffet-LeGal MF, Brian P et al (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523

    Article  PubMed  CAS  Google Scholar 

  134. Miao V, Brost R, Chapple J, She K, Le Gal MF, Baltz RH (2006) The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 33:129–140

    Article  PubMed  CAS  Google Scholar 

  135. Milshteyn A, Schneider JS, Brady SF (2014) Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol 21:1211–1223

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Mo S, Kim DH, Park JW et al (2011) Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 133:976–985

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Murakami T, Burian J, Yanai K, Bibb MJ, Thompson CJ (2011) A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Nat Acad Sci USA 108:16020–16025

    Article  PubMed Central  PubMed  Google Scholar 

  138. Murakami T, Sumida N, Bibb M, Yanai K (2011) ZouA, a putative relaxase, is essential for DNA amplification in Streptomyces kanamyceticus. J Bacteriol 193:1815–1822

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Myronovskyi M, Rozenkränzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98:4557–4570

    Article  PubMed  CAS  Google Scholar 

  140. Myronovskyi M, Tokovenko B, Brötz E, Ruckert C, Kalinowski J, Luzhetskyy A (2014) Genome rearrangements of Streptomyces albus J1074 lead to the carotenoid gene cluster activation. Appl Microbiol Biotecchnol 98:795–806

    Article  CAS  Google Scholar 

  141. Nah JH, Kim HJ, Lee HN, Lee MJ, Choi SS, Kim ES (2013) Identification and biotechnological application of novel regulatory genes involved in Streptomyces polyketide overproduction through reverse engineering strategy. BioMed Res Internat 2013:549737

    Article  CAS  Google Scholar 

  142. Nguyen KT, Ritz D, Gu JQ, Alexander DA, Chu M, Miao V, Brian P, Baltz RH (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Nat Acad Sci USA 103:17462–17467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Ochi K, Tanaka Y, Tojo S (2014) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biotechnol 41:403–414

    Article  PubMed  CAS  Google Scholar 

  145. Olano C, Lombó F, Mendéz C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    Article  PubMed  CAS  Google Scholar 

  146. Olano C, Garcia I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo M, Braña AF, Mendéz C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7:242–256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol 49:1179–1190

    Article  PubMed  CAS  Google Scholar 

  148. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL2338. Nat Biotechnol 25:447–453

    Article  PubMed  CAS  Google Scholar 

  149. Ou X, Zhang B, Zhang L, Zhao G, Ding X (2009) Characterization of rrdA, a TetR family protein gene involved in the regulation of secondary metabolism in Streptomyces coelicolor. Appl Environ Microbiol 75:2158–2165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Owen JG, Charlop-Powers Z, Smith AG, Ternei MA, Calle PY, Reddy BV, Montiel D, Brady SF (2015) Multiplexed metagenomic mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors. Proc Nat Acad Sci USA 137:6044–6052

    Google Scholar 

  151. Pan Y, Lu C, Dong H, Yu L, Liu G, Tan H (2013) Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor. Microb Cell Fact 12:65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  152. Pan Y, Yang X, Li J, Zhang R, Hu Y, Zhou Y, Wang J, Zhu B (2011) Genome sequence of the spinosyns-producing bacterium Saccharopolyspora spinosa NRRL 18395. J Bacteriol 193:3150–3151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Pang X, Aigle B, Girardet JM, Mangenot S, Pernodet JL, Decaris B, Leblond P (2004) Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 48:575–588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Park SR, Yoo YJ, Ban YH, Yoon YJ (2010) Biosynthesis of rapamycin and its regulation: past achievements and recent progress. J Antibiot 63:434–441

    Article  PubMed  CAS  Google Scholar 

  155. Peano C, Tala A, Corti G, Pasanisi D, Durante M, Mita G, Bicciato S, De Bellis G, Alifano P (2012) Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact 11:32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Peano C, Damiano F, Forcata M, Pietrelli A, Palumbo C, Corti G, Siculella L, Fuligni F, Tagliazucchi GM, De Benedetto GE, Bicciato S, De Bellis G, Alifano P (2014) Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering. Metabol Eng 26C:1–16

    Article  CAS  Google Scholar 

  157. Petzke L, Luzhetskyy A (2009) In vivo Tn5-based transposon mutagenesis of streptomycetes. Appl Microbiol Biotechnol 83:979–986

    Article  PubMed  CAS  Google Scholar 

  158. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2015) Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol 4:393–399

    Article  PubMed  CAS  Google Scholar 

  159. Pootoolal J, Thomas MG, Marshall CG, Neu JM, Hubbard BK, Walsh CT, Wright GD (2002) Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Nat Acad Sci USA 99:8962–8967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Pu JY, Peng C, Tang MC, Zhang Y, Guo JP, Song LQ, Hua Q, Tang GL (2013) Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly. Org Lett 15:3674–3677

    Article  PubMed  CAS  Google Scholar 

  161. Pullan ST, Chandra G, Bibb MJ, Merrick K (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genom 12:175

    Article  CAS  Google Scholar 

  162. Rebets Y, Brötz E, Tokovenko B, Luzhetskyy A (2014) Actinomycete biosynthetic potential: how to bridge in silico and in vivo. J Ind Microbiol Biotechnol 41:387–402

    Article  PubMed  CAS  Google Scholar 

  163. Richardson MA, Kuhstoss S, Huber MLB, Ford L, Godfrey O, Turner JR, Rao RN (1990) Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J Bacteriol 172:3790–3798

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Rodicio MR, Chater KF (1988) The SalI (SalGI) restriction-modification system of Streptomyces albus G. Gene 74:39–42

    Article  PubMed  CAS  Google Scholar 

  165. Rodicio MR, Alvarez MA, Chater KF (1991) Isolation and genetic structure of IS112, an insertion sequence responsible for the inactivation of the SalI restriction-modification system of Streptomyces albus G. Mol Gen Genet 225:142–147

    PubMed  CAS  Google Scholar 

  166. Rodriquez-García A, Sola-Landa A, Apel K, Santos-Beneit F, Martín JF (2009) Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucl Acids Res 37:3230–3242

    Article  CAS  Google Scholar 

  167. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol 27:946–950

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Sánchez C, Du L, Edwards DJ, Toney MD, Shen B (2001) Cloning and characterization of a phosphopantetheinyl transferase from Streptomyces verticillus ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin. Chem Biol 8:725–738

    Article  PubMed  Google Scholar 

  169. Santos-Aberturas J, Vincente CM, Guerra SM, Payero TD, Martín JF, Aparicio JF (2011) Molecular control of polyene macrolide biosynthesis: direct binding of the regulator PimM to eight promoters of pimaricin genes and identification of binding boxes. J Biol Chem 286:9150–9161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Santos-Aberturas J, Payero TD, Vincente CM, Guerra SM, Cãnibano C, Martín JF, Aparicio JF (2011) Functional conservation of PAS–LuxR transcriptional regulators in polyene macrolide biosynthesis. Metab Eng 13:756–767

    Article  PubMed  CAS  Google Scholar 

  171. Santos-Aberturas J, Vincente CM, Payero TD, Martín-Sánchez L, Cãnibano C, Martín JF, Aparicio JF (2012) Hierarchial control on polyene macrolide biosynthesis: PimR modulates pimaricin production via the PAS–LuxR transcriptional activator PimM. PLoS One 7:e38536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  172. Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90:615–623

    Article  PubMed  CAS  Google Scholar 

  173. Seipke RF (2015) Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One 10:e0116457

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  174. Seipke RF, Barke J, Brearley C, Hill L, Yu DW, Goss RJM, Hutchings MI (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS one 6:e22028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  175. Seipke RF, Crossman L, Drou N, Heavens D, Bibb MJ, Cassamo M, Hutchings MI (2011) Draft genome sequence of Streptomyces strain S4, a symbiont of the leaf-cutting ant Acromyrmex octospinosus. J Bacteriol 193:4270–4271

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  176. Seipke RF, Hutchings MI (2013) The regulation of biosynthesis of antimycins. Beilstein J Org Chem 9:2556–2563

    Article  PubMed Central  PubMed  Google Scholar 

  177. Seipke RF, Patrick E, Hutchings MI (2014) Regulation of antimycin biosynthesis by the orphan ECF RNA polymerase sigma factor σ (AntA). PeerJ 2:e253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Sekurova ON, Brautaset T, Sletta H, Borgos SEF, Jakobsen ØM, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  179. Seno ET, Baltz RH (1982) S-adenosyl-l-methionine: macrocin O-methyltransferase activities in a series of Streptomyces fradiae mutants that produce different levels of the macrolide antibiotic tylosin. Antimicrob Agents Chemother 21:758–763

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  180. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  181. Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in stretomycetes. Appl Microbiol Biotechnol 87:1525–1532

    Article  PubMed  CAS  Google Scholar 

  182. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterization of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    Article  PubMed  CAS  Google Scholar 

  183. Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff L, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32:1241–1249

    Article  PubMed  CAS  Google Scholar 

  184. Sosio M, Stinchi S, Beltramettti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549

    Article  PubMed  CAS  Google Scholar 

  185. Socio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102

    Article  CAS  Google Scholar 

  186. Solenberg PJ, Baltz RH (1991) Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J Bacteriol 173:1096–1104

    PubMed Central  PubMed  CAS  Google Scholar 

  187. Solenberg PJ, Cantwell CA, Tietz AJ, McGilvray D, Queener SW, Baltz RH (1996) Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 168:67–72

    Article  PubMed  CAS  Google Scholar 

  188. Solenberg PJ, Matsushima P, Stack DR, Wilkie SC, Thompson RC, Baltz RH (1997) Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem Biol 4:195–202

    Article  PubMed  CAS  Google Scholar 

  189. Spohn M, Kirchner N, Kulik A, Jochim A, Wolf F, Muenzer P, Borst O, Gross H, Wohlleben W, Stegmann E (2014) Overproduction of ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob Agents Chemother 58:6185–6196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  190. Stratigopoulos G, Bate N, Cundliffe E (2004) Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol 54:1326–1334

    Article  PubMed  CAS  Google Scholar 

  191. Tanaka Y, Komatsu M, Okamoto S, Tokuyama S, Kaji A, Ikeda H, Ochi K (2009) Antibiotic overproduction by rpsL and rpsG mutants of various actinomycetes. Appl Environ Microbiol 75:4919–4922

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  192. Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiya R, Ochi K (2013) Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 195:2959–2970

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  193. Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Nat Acad Sci USA 109:7085–7090

    Article  PubMed Central  PubMed  Google Scholar 

  194. Tomono A, Tsai Y, Yamazaki H, Ohnishi Y, Horinouchi S (2005) Transcriptional control of A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 187:5595–5604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  195. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol. doi:10.1021/acssynbio.5b00038

    PubMed  Google Scholar 

  196. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333

    Article  PubMed  CAS  Google Scholar 

  197. Verma M, Kaur J, Kumar M et al (2011) Whole genome sequence of the rifamycin B-producing strain Amycolatopsis mediterranei S699. J Bacteriol 193:5562–5563

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  198. Vicente CM, Santos-Aberturas J, Payero TD, Barreales EG, de Pedro A, Aparicio JF (2014) PAS–LuxR transcriptional control of filipin biosynthesis in S. avermitilis. Appl Microbiol Biotechnol 98:9311–9324

    Article  PubMed  CAS  Google Scholar 

  199. Viegelmann C, Margassery LM, Kennedy J, Zhang T, O’Brien C, O’Gara F, Morrissey JP, Dobson AD, Edrada-Ebel R (2014) Metabolic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12:3323–3351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  200. Waldron C, Matsushima P, Rosteck PR, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8:487–499

    Article  PubMed  CAS  Google Scholar 

  201. Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132:2469–2493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  202. Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74:2834–2840

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  203. Wang H, Yang L, Wu K, Li G (2014) Rational selection and engineering of exogenous principle sigma factor (σHrdB) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus. Microb Cell Fact 13:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  204. Wang L, McVey J, Vining LC (2001) Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae. Microbiology 147:1535–1545

    Article  PubMed  CAS  Google Scholar 

  205. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33:15–26

    Article  PubMed  CAS  Google Scholar 

  206. Weissman KJ, Hong H, Oliynyk M, Siskos AP, Leadlay PF (2004) Identification of a phosphopantetheinyl transferase for erythromycin biosynthesis in Saccharopolyspora erythraea. ChemBioChem 5:116–125

    Article  PubMed  CAS  Google Scholar 

  207. Whicher JR, Dutta S, Hansen DA et al (2014) Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510:560–564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  208. Wu H, Liu W, Dong D, Li J, Zhang D, Lu C (2014) SlnM gene overexpression with different promoters on natamycin production in Streptomyces lydicus A02. J Ind Microbiol Biotechnol 41:163–172

    Article  PubMed  CAS  Google Scholar 

  209. Wu P, Pan H, Zhang C, Wu H, Yuan L, Huang X, Zhou Y, Ye B, Weaver DT, Zhang L, Zhang B (2014) SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin bioisynthesis in Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 41:1159–1167

    Article  PubMed  CAS  Google Scholar 

  210. Xu D, Liu G, Cheng L, Lu X, Chen W, Deng Z (2013) Identification of Mur34 as the novel negative regulator responsible for the biosynthesis of muraymycin in Streptomyces sp. NRRL30471. PLoS One 8:e76068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  211. Xu J, Wan E, Kim C-J, Floss HG, Mahmud T (2005) Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Microbiology 151:2515–2528

    Article  PubMed  CAS  Google Scholar 

  212. Xu L, Huang H, Wei W et al (2014) Complete genome sequence and comparative genomic analysis of the vancomycin-producing Amycolatopsis orientalis. BMC Genom 15:363

    Article  CAS  Google Scholar 

  213. Yamada Y, Kuzuyama T, Komatsu M, Shinya L, Ōmura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Nat Adac Sci USA 21:679–688

    Google Scholar 

  214. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, Dorrestein PC, Moore BS (2014) Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Nat Acad Sci USA 111:1957–1962

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  215. Yan Y, Zhang L, Ito Y, Gu X, Asakawa Y, Awakawa T, Abe I, Liu W (2012) Biosynthetic pathway for high structural diversity of a common dilactone core in antimycin production. Org Lett 14:4142–4145

    Article  PubMed  CAS  Google Scholar 

  216. Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement in Streptomyces kanamyceticus. Proc Nat Acad Sci USA 103:9661–9666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  217. Yang D, Zhu X, Wu X, Feng Z, Huang L, Shen B, Xu Z (2011) Titer improvement of iso-migrastatin in selected heterologous Streptomyces hosts and related analysis of mRNA expression by quantitative RT-PCR. Appl Microbiol Biotechnol 89:1709–1719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  218. Yin X, Zabriskie TM (2006) The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology 152:2969–2983

    Article  PubMed  Google Scholar 

  219. Yoo YJ, Hwang J-Y, Shin H-L, Cui H, Lee J, Yoon YJ (2015) Characterization of negative regulatory genes for the biosynthesis of rapamycin in Streptomyces rapamycinicus and its application for improved production. J Ind Microbiol Biotechnol 42:125–135

    Article  PubMed  CAS  Google Scholar 

  220. Yu P, Liu SP, Bu QT, Zhou ZX, Zhu ZH, Huang FL, Li YQ (2014) WblAch, a pivotal activator of natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis L10, is positively regulated by AdpAch. Appl Environ Microbiol 80:6879–6887

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  221. Zaburannyi N, Rabyk M, Ostach B, Federenko V, Luzhetskyy A (2014) Insights into naturally minimized Streptomyces albus J1074 genome. BMC Genom 15:97

    Article  Google Scholar 

  222. Zhang B, Zhang L, Dai R, Yu M, Zhao G, Ding X (2013) An efficient procedure for marker-free mutagenesis of S. coelicolor by site-specific recombination for secondary metabolite overproduction. PLoS One 8:e55906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  223. Zhang L, Wang L, Wang J, Ou X, Zhao G, Ding X (2010) DNA cleavage is independent of synapsis during Streptomyces φBT1 integrase-mediated site-specific recombination. J Mol Cell Biol 2:264–275

    Article  PubMed  CAS  Google Scholar 

  224. Zhang X, Bao Y, Shi X, Ou X, Zhou P, Ding X (2012) Efficient transposition of IS204-derived plasmids in Streptomyces coelicolor. J Microbiol Methods 88:67–72

    Article  PubMed  CAS  Google Scholar 

  225. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement on bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

  226. Zhao H, Zha W (2006) In vitro “sexual” evolution through PCR-based staggered extension process (StEP). Nat Protoc 1:1865–1871

    Article  PubMed  CAS  Google Scholar 

  227. Zhou M, Jing X, Xie P, Chen W, Wang T, Xia H, Qin Z (2012) Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 333:169–179

    Article  PubMed  CAS  Google Scholar 

  228. Zhou TC, Kim BG, Zhong JJ (2014) Enhanced production of validomycin A in Streptomyces hygroscopicus 5008 by engineering validomycin biosynthetic gene cluster. Appl Microbiol Biotechnol 98:7911–7922

    Article  PubMed  CAS  Google Scholar 

  229. Zhu H, Sandiford SK, van Wezel GP (2014) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41:371–386

    Article  PubMed  CAS  Google Scholar 

  230. Zhu Q, Li J, Ma J et al (2012) Discovery and engineered overproduction of antimicrobial nucleoside antibiotic A201A from the deep-sea marine actinomycete Marinactinospora thermotolerans SCSIO 00652. Antimicrob Agents Chemother 56:110–114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  231. Zhuo Y, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye BC, Zhang S, Zhang LX (2010) Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Nat Acad Sci USA 107:11250–11254

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Baltz.

Additional information

Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltz, R.H. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 43, 343–370 (2016). https://doi.org/10.1007/s10295-015-1682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1682-x

Keywords

Navigation