Skip to main content
Log in

The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae

  • Original Paper-JMBM
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Ca2+-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a d-stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  2. Baltz RH (1997) Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae. In: Strohl WR (ed) Biotechnology of antibiotics. Marcel Dekker, New York, pp 415–435

    Google Scholar 

  3. Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83

    Article  PubMed  CAS  Google Scholar 

  4. Baltz RH, McHenney MA, Hosted TJ (1997) Genetics of lipopeptide antibiotic biosynthesis in Streptomyces fradiae A54145 and Streptomyces roseosporus A21978C. In: Baltz RH, Hegeman GD, Skatrud PL (eds) Developments in industrial microbiology. Society for Industrial Microbiology, Fairfax, VA, pp 93–98

    Google Scholar 

  5. Boeck LD, Papiska HR, Wetzel RW, Mynderse JS, Fukuda DS, Mertz FP, Berry DM (1990) A54145, a new lipopeptide antibiotic complex: discovery, taxonomy, fermentation and HPLC. J Antibiot (Tokyo) 43:587–593

    CAS  Google Scholar 

  6. Boeck LD, Wetzel RW (1990) A54145, a new lipopeptide antibiotic complex: factor control through precursor directed biosynthesis. J Antibiot (Tokyo) 43:607–615

    CAS  Google Scholar 

  7. Bruner SD, Weber T, Kohli RM, Schwarzer D, Marahiel MA, Walsh CT, Stubbs MT (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure (Camb) 10:301–310

    Article  CAS  Google Scholar 

  8. Butler AR, Bate N, Cundliffe E (1999) Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem Biol 6:287–292

    Article  PubMed  CAS  Google Scholar 

  9. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  10. Chen H, Hubbard BK, O’Connor SE, Walsh CT (2002) Formation of beta-hydroxy histidine in the biosynthesis of nikkomycin antibiotics. Chem Biol 9:103–112

    Article  PubMed  CAS  Google Scholar 

  11. Clugston SL, Sieber SA, Marahiel MA, Walsh CT (2003) Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry 42:12095–12104

    Article  PubMed  CAS  Google Scholar 

  12. Counter FT, Allen NE, Fukuda DS, Hobbs JN, Ott J, Ensminger PW, Mynderse JS, Preston DA, Wu CY (1990) A54145, a new lipopeptide antibiotic complex: microbiological evaluation. J Antibiot 43:616–622

    PubMed  CAS  Google Scholar 

  13. Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, Fukuda DS, Hamill RL, Biemann K, Herlihy WC (1987) A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot 40:761–777

    PubMed  CAS  Google Scholar 

  14. Fukuda DS, Debono M, Molloy RM, Mynderse JS (1990) A54145, a new lipopeptide antibiotic complex: microbial and chemical modification. J Antibiot 43:601–606

    PubMed  CAS  Google Scholar 

  15. Fukuda DS, Du Bus RH, Baker PJ, Berry DM, Mynderse JS (1990) A54145, a new lipopeptide antibiotic complex: isolation and characterization. J Antibiot 43:594–600

    PubMed  CAS  Google Scholar 

  16. Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B, Sidebottom PJ, Rudd BA, Hayes MA, Smith CP, Micklefield J (2002) Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175–1187

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Õmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  18. Kempter C, Kaiser D, Haag S, Nicholson G, Gnau V, Walk T, Gierling KH, Decker H, Zähner H, Jung G, Metzger JW (1997) CDA: calcium-dependent peptide antibiotics from Streptomyces coelicolor A3(2) containing unusual residues. Angew Chem Int Ed Engl 36:498–501

    Article  CAS  Google Scholar 

  19. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  20. Kohli RM, Walsh CT (2003) Enzymology of acyl chain macrocyclization in natural product biosynthesis. Chem Commun (Camb) 3:297–307

    Article  CAS  Google Scholar 

  21. Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 222:897–908

    Article  PubMed  CAS  Google Scholar 

  22. Lakey JH, Lea EJ, Rudd BA, Wright HM, Hopwood DA (1983) A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity. J Gen Microbiol 129:3565–3573

    PubMed  CAS  Google Scholar 

  23. Lauer B, Russwurm R, Schwarz W, Kalmanczhelyi A, Bruntner C, Rosemeier A, Bormann C (2001) Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety and assembly of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet 264:662–673

    Article  PubMed  CAS  Google Scholar 

  24. Leskiw BK, Bibb MJ, Chater KF (1991) The use of a rare codon specifically during development? Mol Microbiol 5:2861–2867

    Article  PubMed  CAS  Google Scholar 

  25. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  PubMed  CAS  Google Scholar 

  26. Mendez C, Salas JA (1998) ABC transporters in antibiotic-producing actinomycetes. FEMS Microbiol Lett 158:1–8

    Article  PubMed  CAS  Google Scholar 

  27. Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr IB, Bouchard M, Silva CJ, Wrigley SK, Baltz RH (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151(Pt 5):1507–1523

    Google Scholar 

  28. Motamedi H, Shafiee A, Cai SJ, Streicher SL, Arison BH, Miller RR (1996) Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520. J Bacteriol 178:5243–5248

    PubMed  CAS  Google Scholar 

  29. Ryding NJ, Anderson TB, Champness WC (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805

    Article  PubMed  CAS  Google Scholar 

  30. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  PubMed  CAS  Google Scholar 

  31. Seno E, Baltz RH (1989) Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes. In: Shipiro S (ed) Regulation of secondary metabolism in actinomycetes. CRC Press, Boca Raton, pp 1–48

    Google Scholar 

  32. Spatz K, Kohn H, Redenbach M (2002) Characterization of the Streptomyces violaceoruber SANK95570 plasmids pSV1 and pSV2. FEMS Microbiol Lett 213:87–92

    Article  PubMed  CAS  Google Scholar 

  33. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  PubMed  CAS  Google Scholar 

  34. Uguru GC, Milne C, Borg M, Flett F, Smith CP, Micklefield J (2004) Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J Am Chem Soc 126:5032–5033

    Article  PubMed  CAS  Google Scholar 

  35. Wessels P, von Döhren H, Kleinkauf H (1996) Biosynthesis of acylpeptidolactones of the daptomycin type. A comparative analysis of peptide synthetases forming A21978C and A54145. Eur J Biochem 242:665–673

    Article  PubMed  CAS  Google Scholar 

  36. Yeats C, Bentley S, Bateman A (2003) New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol 3:3–20

    Article  PubMed  Google Scholar 

  37. Zhang JH, Quigley NB, Gross DC (1997) Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae. Appl Environ Microbiol 63:2771–2778

    PubMed  CAS  Google Scholar 

  38. Zotchev SB, Schrempf H (1994) The linear Streptomyces plasmid pBL1: analyses of transfer functions. Mol Gen Genet 242:374–382

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. McMenanim and L. Thurston for technical assistance, and S.K. Wrigley for reviewing and discussing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Baltz.

Additional information

Note: A patent application on the sequence of the A54145 gene cluster was published (PCT Int. Appl., W003060127A2) during the preparation of this manuscript. A small deletion of 67 nucleotides (nucleotides 56952–57018) was observed relative to the sequence assembled in this study. The present sequence, obtained from a library clone, was confirmed by sequencing products from replicate PCR amplifications of the region in question from two stocks of S. fradiae DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, V., Brost, R., Chapple, J. et al. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae . J IND MICROBIOL BIOTECHNOL 33, 129–140 (2006). https://doi.org/10.1007/s10295-005-0028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0028-5

Keywords

Navigation