Skip to main content
Log in

Genetic factors that influence moenomycin production in streptomycetes

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Moenomycin, a natural phosphoglycolipid product that has a long history of use in animal nutrition, is currently considered an attractive starting point for the development of novel antibiotics. We recently reconstituted the biosynthesis of this natural product in a heterologous host, Streptomyces lividans TK24, but production levels were too low to be useful. We have examined several other streptomycetes strains as hosts and have also explored the overexpression of two pleiotropic regulatory genes, afsS and relA, on moenomycin production. A moenomycin-resistant derivative of S. albus J1074 was found to give the highest titers of moenomycin, and production was improved by overexpressing relA. Partial duplication of the moe cluster 1 in S. ghanaensis also increased average moenomycin production. The results reported here suggest that rational manipulation of global regulators combined with increased moe gene dosage could be a useful technique for improvement of moenomycin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  2. Baizman ER, Branstrom AA, Longley CB, Allanson N, Sofia MJ, Gange D, Goldman RC (2000) Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146:3129–3140

    CAS  PubMed  Google Scholar 

  3. Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83

    Article  CAS  PubMed  Google Scholar 

  4. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  5. Champness W (2000) Actinomycete development, antibiotic production and phylogeny: questions and challenges. In: Brun YV, Skimkets LJ (eds) Prokaryotic development. Am Soc Microbiol, Washington, DC, pp 11–31

    Google Scholar 

  6. Chater KF, Wilde LC (1980) Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol 116:323–334

    CAS  PubMed  Google Scholar 

  7. Chen L, Lu Y, Chen J, Zhang W, Shu D, Qin Z, Yang S, Jiang W (2008) Characterization of a negative regulator AveI for avermectin biosynthesis in Streptomyces avermitilis NRRL8165. Appl Microbiol Biotechnol 80:277–286

    Article  CAS  PubMed  Google Scholar 

  8. Datsenko K, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  Google Scholar 

  9. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  PubMed  Google Scholar 

  10. Fedorenko V, Golets L, Yu Demydchuk, Kriugel H (1998) Analysis of genome rearrangements in Streptomyces kanamyceticus mutants. Antibiot Khimitoter (Rus) 43:14–19

    CAS  Google Scholar 

  11. Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396

    Article  CAS  PubMed  Google Scholar 

  12. Goldman RC, Gange D (2000) Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. Curr Med Chem 7:801–820

    CAS  PubMed  Google Scholar 

  13. Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287

    Article  CAS  PubMed  Google Scholar 

  14. Kieser T, Bibb M, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  15. Lee J, Hwang Y, Kim S, Kim E, Choi C (2000) Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J Biosci Bioeng 89:606–608

    Article  CAS  PubMed  Google Scholar 

  16. Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F, Kyung YS, Sherman DH, Hu WS (2008) Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics 9:56

    Article  PubMed  CAS  Google Scholar 

  17. Lovering AL, de Castro LH, Lim D, Strynadka NC (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:1402–1405

    Article  CAS  PubMed  Google Scholar 

  18. Luzhetskyy AM, Ostash BO, Fedorenko VO (2001) Intergeneric conjugation Escherichia coliStreptomyces globisporus 1912 with using of integrative plasmid pSET152 and its derivative. Rus J Genet 37:1340–1347

    Google Scholar 

  19. McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    Article  CAS  PubMed  Google Scholar 

  20. Ostash B, Walker S (2005) Bacterial transglycosylase inhibitors. Curr Opin Chem Biol 9:459–466

    Article  CAS  PubMed  Google Scholar 

  21. Ostash B, Saghatelian A, Walker S (2007) A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14:257–267

    Article  CAS  PubMed  Google Scholar 

  22. Ostash B, Makitrinskyy R, Walker S, Fedorenko V (2009) Identification and characterization of Streptomyces ghanaensis ATCC14672 integration sites for three actinophage-based plasmids. Plasmid 61:171–175

    Article  CAS  PubMed  Google Scholar 

  23. Ostash B, Doud EH, Lin C, Ostash I, Perlstein DL, Fuse S, Wolpert M, Kahne D, Walker S (2009) Complete characterization of seventeen-step moenomycin biosynthetic pathway. Biochemistry 48:8830–8841

    Article  CAS  PubMed  Google Scholar 

  24. Ostash I, Ostash B, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2008) Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol Lett 285:195–202

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  26. Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531

    Article  PubMed  Google Scholar 

  27. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178:7276–7284

    CAS  PubMed  Google Scholar 

  28. Stinchi S, Azimonti S, Donadio S, Sosio M (2003) A gene transfer system for glycopeptide producer Nonomuraea sp. ATCC39727. FEMS Microbiol Lett 225:53–57

    Article  CAS  PubMed  Google Scholar 

  29. Sun J, Hesketh A, Bibb M (2001) Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J Bacteriol 183:3488–3498

    Article  CAS  PubMed  Google Scholar 

  30. Vogtli M, Chang PC, Cohen SN (1994) afsR2: a previously undetected gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol Microbiol 14:643–653

    Article  CAS  PubMed  Google Scholar 

  31. Taylor J, Li X, Oberthür M, Zhu W, Kahne D (2006) The total synthesis of moenomycin A. J Am Chem Soc 128:15084–15085

    Article  CAS  PubMed  Google Scholar 

  32. Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci USA 103:9661–9666

    Article  CAS  PubMed  Google Scholar 

  33. Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol 3:429–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant Bg-01F from the Ministry of Education and Science of Ukraine (to V. F.) and NIH grant AI50855 (to S. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Fedorenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 88.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makitrynskyy, R., Rebets, Y., Ostash, B. et al. Genetic factors that influence moenomycin production in streptomycetes. J Ind Microbiol Biotechnol 37, 559–566 (2010). https://doi.org/10.1007/s10295-010-0701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0701-1

Keywords

Navigation