Skip to main content
Log in

Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Validamycin A (VAL-A) is a widely used antifungal antibiotic for the treatment of sheath blight disease of rice and other plants. It can be produced from agro-industrial by-products by Streptomyces hygroscopicus 5008. To enhance its production titer, in this work, the entire val gene cluster was amplified in tandem in S. hygroscopicus 5008 by integrating the zouA-mediated DNA amplification system into between the two boundaries of val gene cluster, resulting in multiple copies (mainly three to five) of the val gene cluster. The genetic stability of the amplified copies was confirmed by Southern blot and fermentation experiments. In shake flask fermentation, the recombinant strain (TC03) led to a 34 % enhancement of VAL-A production titer compared to that of the wild-type strain, while the accumulation of intermediate validoxylamine A was decreased in TC03. Additionally, both the structural gene transcription levels and the ValG enzyme activity were significantly increased in TC03. This work demonstrated that the amplification of the val gene cluster was an efficient strategy to enhance VAL-A production by S. hygroscopicus 5008, and the information obtained would be helpful for engineering other interesting antibiotic biosynthesis by gene cluster amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai LQ, Li L, Xu H, Minagawa K, Yu Y, Zhang Y, Zhou XF, Deng ZX (2006) Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol 13:387–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beites T, Rodríguez-García A, Moradas-Ferreira P, Aparicio JF, Mendes MV (2014) Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species. Appl Microbiol Biotechnol 98:2231–2241

    Article  CAS  PubMed  Google Scholar 

  • Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Jung E, Yang YH, Kim BG (2013) Production of a novel O-methyl-isoflavone by regioselective sequential hydroxylation and O-methylation reactions in Streptomyces avermitilis host system. Biotechnol Bioeng 110:2591–2599

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Bai L (2006) Antibiotic biosynthetic pathways and pathway engineering—a growing research field in China. Nat Prod Rep 23:811–827

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Mahmud T, Tornus I, Lee S, Floss HG (2001) Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J Am Chem Soc 123:2733–2742

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Yu Y, Jia X, Chen X, Shen Y (2013) Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour Technol 131:13–20

    Article  CAS  PubMed  Google Scholar 

  • Hwang KS, Kim HU, Charusanti P, Palsson BO, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32:255–268

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Wei J, Li L, Niu G, Tan H (2013) Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Appl Microbiol Biotechnol 97:10469–10477

    Article  CAS  PubMed  Google Scholar 

  • Jung WS, Yoo YJ, Park JW, Park SR, Han AR, Ban YH, Kim EJ, Kim E, Yoon YJ (2011) A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 91:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom

    Google Scholar 

  • Liao Y, Wei Z-H, Bai L, Deng Z, Zhong JJ (2009) Effect of fermentation temperature on validamycin A production by Streptomyces hygroscopicus 5008. J Biotechnol 142:271–274

    Article  CAS  PubMed  Google Scholar 

  • Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2010) Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb Cell Fact 9:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Llano-Sotelo B, Azucena EF Jr, Kotra LP, Mobashery S, Chow CS (2002) Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol 9:455–463

    Article  CAS  PubMed  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Burian J, Yanai K, Bibb MJ, Thompson CJ (2011a) A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci U S A 108:16020–16025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami T, Sumida N, Bibb M, Yanai K (2011b) ZouA, a putative relaxase, is essential for DNA amplification in Streptomyces kanamyceticus. J Bacteriol 193:1815–1822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peschke U, Schmidt H, Zhang H-Z, Piepersberg W (1995) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol 16:1137–1156

    Article  CAS  PubMed  Google Scholar 

  • Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7:578–588

    Article  CAS  PubMed  Google Scholar 

  • Sezonov G, Blanc V, Bamas-Jacques N, Friedmann A, Pernodet JL, Guerineau M (1997) Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat Biotechnol 15:349–353

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216:492–497

    Article  CAS  PubMed  Google Scholar 

  • Tan GY, Bai L, Zhong JJ (2013) Exogenous 1,4-butyrolactone stimulates A-factor-like cascade and validamycin biosynthesis in streptomyces hygroscopicus 5008. Biotechnol Bioeng 110:2984–2993

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Rev Genetics 13:227–232

    CAS  Google Scholar 

  • Wei ZH, Bai L, Deng Z, Zhong JJ (2011) Enhanced production of validamycin A by H2O2-induced reactive oxygen species in fermentation of Streptomyces hygroscopicus 5008. Bioresour Technol 102:1783–1787

    Article  CAS  PubMed  Google Scholar 

  • Wei ZH, Bai L, Deng Z, Zhong JJ (2012a) Impact of nitrogen concentration on validamycin A production and related gene transcription in fermentation of Streptomyces hygroscopicus 5008. Bioproc Biosyst Eng 35:1201–1208

    Article  CAS  Google Scholar 

  • Wei ZH, Wu H, Bai L, Deng Z, Zhong JJ (2012b) Temperature shift-induced reactive oxygen species enhanced validamycin A production in fermentation of Streptomyces hygroscopicus 5008. Bioproc Biosyst Eng 35:1309–1316

    Article  CAS  Google Scholar 

  • Widenbrant EM, Tsai HH, Chen CW, Kao CM (2008) Spontaneous amplification of the actinorhodin gene cluster in Streptomyces coelicolor involving native insertion sequence IS466. J Bacteriol 190:4754–4758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Qu S, Lu C, Zheng H, Zhou X, Bai L, Deng Z (2012) Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 13:337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci U S A 103:9661–9666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Bai L, Minagawa K, Jian X, Li L, Li J, Chen S, Cao E, Mahmud T, Floss HG, Zhou X, Deng Z (2005) Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol 71:5066–5076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Wu H, Li Z, Zhou X, Bai L, Deng Z (2011) Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008. Metab Eng 13:768–776

    Article  CAS  PubMed  Google Scholar 

  • Zhou WW, Ma B, Tang YJ, Zhong JJ, Zheng X (2012) Enhancement of validamycin A production by addition of ethanol in fermentation of Streptomyces hygroscopicus 5008. Bioresour Technol 114:616–621

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Cheng X, Liu Y, Deng Z, You D (2013) Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng 19:69–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Linquan Bai for helpful discussion about recombinant construction, Dr. Wei Ma for providing the PFGE equipment and sharing the expertise on PFGE and Southern blot analysis, Prof. Xiaoxia Xia for various suggestions, and Ms. Edirin Elaine Sido from Harvard University, USA, for linguistic advice. The financial support from the National Basic Research Program of China (973 program no. 2012CB721006) and the Program of Shanghai Subject Chief Scientist (no. 14XD1402600) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jiang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, TC., Kim, BG. & Zhong, JJ. Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 98, 7911–7922 (2014). https://doi.org/10.1007/s00253-014-5943-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5943-9

Keywords

Navigation