Skip to main content
Log in

Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Inducible expression is a versatile genetic tool for controlling gene transcription, determining gene functions and other uses. Herein, we describe our attempts to create several inducible systems based on a cumate or a resorcinol switch, a hammerhead ribozyme, the LacI repressor, and isopropyl β-d-thiogalactopyranoside (IPTG). We successfully developed a new cumate (p-isopropylbenzoic acid)-inducible gene switch in actinobacteria that is based on the CymR regulator, the operator sequence (cmt) from the Pseudomonas putida cumate degradation operon and P21 synthetic promoter. Resorcinol-inducible expression system is also functional and is composed of the RolR regulator and the PA3 promoter fused with the operator (rolO) from the Corynebacterium glutamicum resorcinol catabolic operon. Using the gusA (β-glucuronidase) gene as a reporter, we showed that the newly generated expression systems are tightly regulated and hyper-inducible. The activity of the uninduced promoters is negligible in both cases. Whereas the induction factor reaches 45 for Streptomyces albus in the case of cumate switch and 33 in the case of resorcinol toggle. The systems are also dose-dependent, which allows the modulation of gene expression even from a single promoter. In addition, the cumate system is versatile, given that it is functional in different actinomycetes. Finally, these systems are nontoxic and inexpensive, as these are characteristics of cumate and resorcinol, and they are easy to use because inducers are water-soluble and easily penetrate cells. Therefore, the P21-cmt-CymR and PA3-rolO-RolR systems are powerful tools for engineering actinobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Becker NA, Peters JP, Maher LJ 3rd, Lioberger TA (2013) Mechanism of promoter repression by Lac repressor-DNA loops. Nucleic Acids Res 41(1):156–166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobateria: unique challenges and opportunities. Front Microbiol 4:246. doi:10.3389/fmicb.2013.00246

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  PubMed  CAS  Google Scholar 

  • Bibb M, Hesketh A (2009) Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol 458:93–116

    Article  PubMed  CAS  Google Scholar 

  • Bilyk B, Luzhetskyy A (2014) Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol 98(11):5095–5104

    Article  PubMed  CAS  Google Scholar 

  • Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58

    Article  PubMed  CAS  Google Scholar 

  • Blount BA, Weenink T, Ellis T (2012) Construction of synthetic regulatory networks in yeast. FEBS Lett 586(15):2112–2121

    Article  PubMed  CAS  Google Scholar 

  • Boyle PM, Silver PA (2012) Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 14:223–232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 66(10):571–591

    Article  CAS  Google Scholar 

  • Chng C, Lum AM, Vroom JA, Kao CM (2008) A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Proc Natl Acad Sci U S A 105(32):11346–11351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi EN, Cho MC, Kim Y, Kim CK, Lee K (2003) Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149(Pt 3):795–805

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Morel L, Bourque D, Mullick A, Massie B, Míguez CB (2006) Bestowing inducibility on the cloned methanol dehydrogenase promoter (PmxaF) of Methylobacterium extorquens by applying regulatory elements of Pseudomonas putida F1. Appl Environ Microbiol 72:7723–7729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi YJ, Morel L, Le François T, Bourque D, Bourget L, Groleau D, Massie B, Míguez CB (2010) Novel, versatile and tightly regulated expression system for Escherichia coli strains. Appl Environ Microbiol 76(15):5058–5066

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidson EA, Windram OP, Bayer TS (2012) Building synthetic systems to learn nature’s design principles. Adv Exp Med Biol 751:411–429

    Article  PubMed  CAS  Google Scholar 

  • Egbert RG, Klavins E (2012) Fine-tuning gene networks using simple sequence repeats. Proc Natl Acad Sci U S A 109(42):16817–16822

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grespi F, Ottina E, Yannoutsos N, Geley S, Villunger A (2011) Generation and evaluation of an IPTG-regulated version of Vav gene promoter for mouse transgenesis. PLoS One 6(3):e18051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gust B (2009) Cloning and analysis of natural product pathways. Methods Enzymol 458:159–180

    Article  PubMed  CAS  Google Scholar 

  • Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 101(39):14031–14035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holmes DJ, Caso JL, Thompson CJ (1993) Autogenous transcriptional activation of a thiostrepton induced gene in Streptomyces lividans. EMBO J 12(8):3183–3191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V (2013) Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus—producer of teicoplanin, drug of last defense. J Biotechnol 168(4):367–372

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zhao K-X, Shen X-H, Chaudhry MT, Jiang C-Y, Liu S-J (2006) Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(11):7238–7245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Kavita P, Burma PK (2008) A comparative analysis of green fluorescent protein and β-glucuronidase protein-encoding genes as a reporter system for studying the temporal expression profiles of promoters. J Biosci 33(3):337–343

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • Li TL, Huang F, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11:107–119

    PubMed  CAS  Google Scholar 

  • Li T, Zhao K, Huang Y, Li D, Jiang C-Y, Zhou N, Fan Z, Liu S-J (2012) The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum regulates resorcinol catabolism by binding to a unique operator, rolO. Appl Environ Microbiol 78(17):6009–6016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liew AT, Theis T, Jensen SO, Garcia-Lara J, Foster SJ, Firth N, Lewis PJ, Harry EJ (2011) A simple plasmid based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology 157:666–676

    Article  PubMed  CAS  Google Scholar 

  • Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci U S A 108(21):8617–8622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Medema MH, Alam MT, Breitling R, Takano E (2011) The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng Bugs 2(4):230–233

    Article  PubMed  Google Scholar 

  • Mullic A, Xu Y, Warren R, Koutroumanis M, Guilbault C, Broussau S, Malenfant F, Bourget L, Lamoureux L, Lo R, Caron AW, Pilotte A, Massie B (2006) The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol 6:43

    Article  Google Scholar 

  • Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77(15):5370–5383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent and weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97(1):87–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oehler S, Eismann ER, Kämer H, Müller-Hill B (1990) The free operators of the lac operon cooperate in repression. EMBO J 9(4):973–979

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ogawa A, Maeda M (2008) An artificial aptazyme based riboswitch and its cascading system in E. coli. Chembiochem 9(2):206–209

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ostash B, Ostash I, Horbal L, Fedorenko V (2013) Exploring and exploiting gene networks that regulate natural products biosynthesis in actinobacteria. Nat Prod J 3:189–198

    CAS  Google Scholar 

  • Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez-García A, Combes P, Pérez-Redondo R, Smith MC, Smith MC (2005) Natural and synthetic tetracycline-inducible promoters for use in the antibiotic producing bacteria Streptomyces. Nucleic Acids Res 33(9):e87

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph MM, Vockenhuber MP, Suess B (2013) Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 159:1416–1422

    Article  PubMed  CAS  Google Scholar 

  • Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90:615–623

    Article  PubMed  CAS  Google Scholar 

  • Siegl T, Tokovenko B, Myronovkyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    Article  PubMed  CAS  Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128

    Article  PubMed  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1133

    Article  PubMed  Google Scholar 

  • van Wezel GP, McKenzie NL, Nodwell JR (2009) Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol 458:117–141

    Article  PubMed  Google Scholar 

  • Wang YH, Wei KY, Smolke CD (2013) Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 4:69–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C (1994) A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J 5:559–569

    Article  PubMed  CAS  Google Scholar 

  • Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl 47(14):2604–2607

    Article  PubMed  CAS  Google Scholar 

  • Yansura DG, Henner DJ (1984) Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A 81:439–443

  • Yen L, Magnier M, Weissleder R, Stockwell BR, Mulligan RC (2006) Identification of inhibitors of ribozyme self cleavage in mammalian cells via high throughput screening of chemical libraries. RNA 12:797–806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zaburannyi N, Rabyk M, Ostash B, Fedorenko V, Luzhetskyy A (2014) Insights into naturally minimized Streptomyces albus J1074 genome. BMC Genomics 15:97. doi:10.1186/1471-2164-15-97

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission under the 7th Framework Program through the “Collaborative Project” action, “STREPSYNTH” grant No. 613877, and through the European Research Council (ERC) starting grant EXPLOGEN No. 281623 to AL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Luzhetskyy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horbal, L., Fedorenko, V. & Luzhetskyy, A. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98, 8641–8655 (2014). https://doi.org/10.1007/s00253-014-5918-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5918-x

Keywords

Navigation