Skip to main content
Log in

Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways

  • Review Article
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Heterologous gene expression is one of the main strategies used to access the full biosynthetic potential of actinomycetes, as well as to study the metabolic pathways of natural product biosynthesis and to create unnatural pathways. Streptomyces coelicolor A3(2) is the most studied member of the actinomycetes, bacteria renowned for their prolific capacity to synthesize a wide range of biologically active specialized metabolites. We review here the use of strains of this species for the heterologous production of structurally diverse actinomycete natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395

    Article  Google Scholar 

  2. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2:125–131

    Google Scholar 

  4. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  PubMed  Google Scholar 

  5. W-H Li J, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  6. Sources of therapeutically useful antibiotics. It is difficult to obtain accurate information about the number of marketed antibiotics obtained directly from, or derived from metabolites produced by, actinomycetes. Our figures were obtained by analysing the origin of the antibiotics listed on http://en.wikipedia.org/wiki/Timeline_of_antibiotics and classifying them into two categories, “fully synthetic” and “natural product related”; the last category was further divided according to the producing organism into three categories, “actinomycete”, “other bacteria” and “fungi”. The initial list contains 138 antibiotic formulations, of which 28 are based on a fully synthetic active pharmaceutical ingredient (API) (mostly quinolones and fluoroquinolones) and 110 contain APIs derived from natural products (80%). Of these 110, 48 formulations (44% of all natural product formulations; 35% of all formulations) contain metabolites isolated from actinomycetes (or semisynthetic derivatives of them), three are derived from other bacteria, and 59 contain APIs derived from metabolites produced by fungi (almost exclusively semisynthetic compounds derived from penicillins and cephalosporins). Therefore, 35% of all marketed antibiotic formulations contain an active ingredient derived, directly or indirectly, from an actinomycete. Our analysis suggests that all marketed APIs are derived from just 41 original molecules, 33 of which are natural products; only five of these 33 are produced by fungi and three by bacteria other than actinomycetes, leaving 25 original structures produced by actinomycetes. Thus actinomycetes appear to be the source of 61% of all original molecules and of 76% of the original natural product compounds developed for use in marketed antibiotic formulations

  7. Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang H, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  8. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl 2):14555–14561

    Article  CAS  PubMed  Google Scholar 

  9. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  PubMed  Google Scholar 

  10. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353

    Article  CAS  PubMed  Google Scholar 

  12. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263

    Article  CAS  PubMed  Google Scholar 

  13. Ochi K, Tanaka Y, Tojo S (2013) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymeraseor or by rare earth elements. J Indust Microbiol Biotechnol

  14. Zhu H, Sandifod SK, van Wezel GP (2013) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol

  15. Gomez-Escribano JP, Bibb MJ (2012) Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300

    CAS  PubMed  Google Scholar 

  16. Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772

    Article  CAS  PubMed  Google Scholar 

  17. Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128

    Article  CAS  PubMed  Google Scholar 

  18. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA, Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (eds) (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  19. Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ (2013) Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8:e69319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    Article  PubMed  Google Scholar 

  21. Barona-Gómez F, Lautru S, Francou F-X, Leblond P, Pernodet J-L, Challis GL (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152:3355–3366

    Article  PubMed  Google Scholar 

  22. Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283

    Article  PubMed  Google Scholar 

  23. Bystrykh LV, Fernández-Moreno MA, Herrema JK, Malpartida F, Hopwood DA, Dijkhuizen L (1996) Production of actinorhodin-related “blue pigments” by Streptomyces coelicolor A3(2). J Bacteriol 178:2238–2244

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3:2716–2720

    Article  CAS  Google Scholar 

  25. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  PubMed  Google Scholar 

  26. Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B, Sidebottom PJ, Rudd BAM, Hayes MA, Smith CP, Micklefield J (2002) Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175–1187

    Article  CAS  PubMed  Google Scholar 

  27. Jiang J, He X, Cane DE (2007) Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 3:711–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kempter C, Kaiser D, Haag S, Nicholson G, Gnau V, Walk T, Gierling KH, Decker H, Zähner H, Jung G, Metzger JW (1997) CDA: calcium-dependent peptide antibiotics from Streptomyces coelicolor A3(2) containing unusual residues. Angew Chem Int Ed 36:498–501

    Article  CAS  Google Scholar 

  29. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    Article  CAS  PubMed  Google Scholar 

  30. Lin X, Hopson R, Cane DE (2006) Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sesquiterpene synthase. J Am Chem Soc 128:6022–6023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mo S, Sydor PK, Corre C, Alhamadsheh MM, Stanley AE, Haynes SW, Song L, Reynolds KA, Challis GL (2008) Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol 15:137–148

    Article  CAS  PubMed  Google Scholar 

  32. Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GL (2006) Type III polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754–14755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Taguchi T, Itou K, Ebizuka Y, Malpartida F, Hopwood DA, Surti CM, Booker-Milburn KI, Stephenson GR, Ichinose K (2000) Chemical characterisation of disruptants of the Streptomyces coelicolor A3(2) actVI genes involved in actinorhodin biosynthesis. J Antibiot (Tokyo) 53:144–152

    Article  Google Scholar 

  34. Tsao SW, Rudd BA, He XG, Chang CJ, Floss HG (1985) Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot (Tokyo) 38:128–131

    Article  CAS  Google Scholar 

  35. Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 283:8183–8189

    Article  CAS  PubMed  Google Scholar 

  36. Flinspach K, Westrich L, Kaysser L, Siebenberg S, Gomez-Escribano JP, Bibb M, Gust B, Heide L (2010) Heterologous expression of the biosynthetic gene clusters of coumermycin A(1), clorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strains. Biopolymers 93:823–832

    Article  CAS  PubMed  Google Scholar 

  37. Sohoni SV, Bapat PM, Lantz AE (2012) Robust, small-scale cultivation platform for Streptomyces coelicolor. Microb Cell Fact 11:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262:1546–1550

    Article  CAS  PubMed  Google Scholar 

  39. Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215

    Article  CAS  PubMed  Google Scholar 

  41. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Young TS, Dorrestein PC, Walsh CT (2012) Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. Chem Biol 19:1600–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wyszynski FJ, Hesketh AR, Bibb MJ, Davis BG (2010) Dissecting tunicamycin biosynthesis by genome mining: cloning and heterologous expression of a minimal gene cluster. Chem Sci 1:581–589

    Article  CAS  Google Scholar 

  44. Wyszynski FJ, Lee SS, Yabe T, Wang H, Gomez-Escribano JP, Bibb MJ, Lee SJ, Davies GJ, Davis BG (2012) Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nat Chem 4:539–546

    Article  CAS  PubMed  Google Scholar 

  45. Völler GH, Krawczyk JM, Pesic A, Krawczyk B, Nachtigall J, Süssmuth RD (2012) Characterization of new class III lantibiotics–erythreapeptin, avermipeptin and griseopeptin from Saccharopolyspora erythraea, Streptomyces avermitilis and Streptomyces griseus demonstrates stepwise N-terminal leader processing. Chembiochem 13:1174–1183

    Article  PubMed  Google Scholar 

  46. Li T, Du Y, Cui Q, Zhang J, Zhu W, Hong K, Li W (2013) Cloning, characterization and heterologous expression of the indolocarbazole biosynthetic gene cluster from marine-derived Streptomyces sanyensis FMA. Mar Drugs 11:466–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kaysser L, Bernhardt P, Nam S-J, Loesgen S, Ruby JG, Skewes-Cox P, Jensen PR, Fenical W, Moore BS (2012) Merochlorins A-D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J Am Chem Soc 134:11988–11991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Huo L, Rachid S, Stadler M, Wenzel SC, Müller R (2012) Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol 19:1278–1287

    Article  CAS  PubMed  Google Scholar 

  49. Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BA, Floss HG, Omura S (1985) Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314:642–644

    Article  CAS  PubMed  Google Scholar 

  50. Alt S, Burkard N, Kulik A, Grond S, Heide L (2011) An artificial pathway to 3,4-dihydroxybenzoic acid allows generation of new aminocoumarin antibiotic recognized by catechol transporters of E. coli. Chem Biol 18:304–313

    Article  CAS  PubMed  Google Scholar 

  51. Wright F, Bibb MJ (1992) Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65

    Article  CAS  PubMed  Google Scholar 

  52. Saleh O, Flinspach K, Westrich L, Kulik A, Gust B, Fiedler H-P, Heide L (2012) Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 8:501–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Saleh O, Bonitz T, Flinspach K, Kulik A, Burkard N, Muhlenweg A, Vente A, Polnick S, Lammerhofer M, Gust B, Fiedler H-P, Heide L (2012) Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines. Med Chem Commun 3:1009–1019

    Article  CAS  Google Scholar 

  54. Smanski MJ, Casper J, Peterson RM, Yu Z, Rajski SR, Shen B (2012) Expression of the platencin biosynthetic gene cluster in heterologous hosts yielding new platencin congeners. J Nat Prod 75:2158–2167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Du D, Zhu Y, Wei J, Tian Y, Niu G, Tan H (2013) Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97:6383–6396

    Article  CAS  PubMed  Google Scholar 

  56. Bell R (2010) Analysis and manipulation of “actagardine” gene clusters from Actinoplanes. PhD thesis, University of East Anglia

  57. Boakes S, Cortés J, Appleyard AN, Rudd BAM, Dawson MJ (2009) Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microbiol 72:1126–1136

    Article  CAS  PubMed  Google Scholar 

  58. Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA 107:13461–13466

    Article  CAS  PubMed  Google Scholar 

  59. Foulston L (2010) Cloning and analysis of the microbisporicin lantibiotic gene cluster from Microbispora corallina. PhD thesis University of East Anglia

  60. Foulston L, Bibb M (2011) Feed-forward regulation of microbisporicin biosynthesis in Microbispora corallina. J Bacteriol 193:3064–3071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Sherwood EJ, Bibb MJ (2013) The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 110:E2500–E2509

    Article  CAS  PubMed  Google Scholar 

  62. Sherwood EJ, Hesketh AR, Bibb MJ (2013) Cloning and analysis of the planosporicin lantibiotic biosynthetic gene cluster of Planomonospora alba. J Bacteriol 195:2309–2321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-Ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396

    Article  CAS  PubMed  Google Scholar 

  64. Marcone GL, Foulston L, Binda E, Marinelli F, Bibb M, Beltrametti F (2010) Methods for the genetic manipulation of Nonomuraea sp. ATCC 39727. J Ind Microbiol Biotechnol 37:1097–1103

    Article  CAS  PubMed  Google Scholar 

  65. Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci USA 107:16297–16302

    Article  CAS  PubMed  Google Scholar 

  66. Claesen J, Bibb MJ (2011) Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J Bacteriol 193:2510–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kaysser L, Tang X, Wemakor E, Sedding K, Hennig S, Siebenberg S, Gust B (2011) Identification of a napsamycin biosynthesis gene cluster by genome mining. Chembiochem 12:477–487

    Article  CAS  PubMed  Google Scholar 

  68. Niu G, Li L, Wei J, Tan H (2013) Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis. Chem Biol 20:34–44

    Article  CAS  PubMed  Google Scholar 

  69. Jankowitsch F, Schwarz J, Rückert C, Gust B, Szczepanowski R, Blom J, Pelzer S, Kalinowski J, Mack M (2012) Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin. J Bacteriol 194:6818–6827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Robles-Reglero V, Santamarta I, Álvarez-Álvarez R, Martín JF, Liras P (2013) Transcriptional analysis and proteomics of the holomycin gene cluster in overproducer mutants of Streptomyces clavuligerus. J Biotechnol 163:69–76

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Gomez-Escribano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez-Escribano, J.P., Bibb, M.J. Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41, 425–431 (2014). https://doi.org/10.1007/s10295-013-1348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1348-5

Keywords

Navigation