Skip to main content
Log in

The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pathogenic antibiotic-resistant bacteria are an unprecedented threat to health care worldwide. The range of antibiotics active against these bacteria is narrow; it includes teicoplanin, a “last resort” drug, which is produced by the filamentous actinomycete Actinoplanes teichomyceticus. In this report, we determine the functions of tei15* and tei16*, pathway-specific regulatory genes that code for StrR- and LuxR-type transcriptional factors, respectively. The products of these genes are master switches of teicoplanin biosynthesis, since their inactivation completely abolished antibiotic production. We show that Tei15* positively regulates the transcription of at least 17 genes in the cluster, whereas the targets of Tei16* still remain unknown. Integration of tei15* or tei16* under the control of the aminoglycoside resistance gene aac(3)IV promoter into attBϕC31 site of the A. teichomyceticus chromosome increased teicoplanin productivity to nearly 1 g/L in TM1 industrial medium. The expression of these genes from the moderate copy number episomal vector pKC1139 led to 3–4 g/L teicoplanin, while under the same conditions, wild type produced approximately 100 mg/L. This shows that a significant increase in teicoplanin production can be achieved by a single step of genetic manipulation of the wild-type strain by increasing the expression of the tei regulatory genes. This confirms that natural product yields can be increased using rational engineering once suitable genetic tools have been developed. We propose that this new technology for teicoplanin overproduction might now be transferred to industrial mutants of A. teichomyceticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alduina R, Lo Piccolo L, D’Alia D, Ferraro C, Gunnarsson N, Donadio S, Puqlia AM (2007) Phosphate controlled regulator for the biosynthesis of the dalbavancin precursor A40926. J Bacteriol 189(22):8120–8129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beltrametti F, Jovetic S, Feroggio M, Gastaldo L, Selva E, Marinelli F (2004) Valine influences production and complex composition of glycopeptide antibiotic A40926 in fermentations of Nonomuraea sp. ATCC 39727. J Antibiot 57(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Beltrametti F, Consolandi A, Carrano L, Bagatin F, Rossi R, Leoni L, Zennaro E, Selva E, Marinelli F (2007) Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan. Antimicrob Agents Chemother 51(4):1135–1141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boger DL, Kim SH, Mori Y, Weng JH, Rogel O, Castle SL, McAtee JJ (2001) First and second generation total synthesis of the teicoplanin aglycon. J Am Chem Soc 123(9):1862–1871

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86(1):19–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chow AV, Jewesson PJ, Kureishi A, Phillips GL (1993) Teicoplanin versus vancomycin in the empirical treatment of febrile neutropenic patients. Eur J Haematol Suppl 54:18–24

    PubMed  CAS  Google Scholar 

  • Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am 17(3):479–501

    Article  Google Scholar 

  • Gust B, Kieser T, Chater K (2002) PCR targeting system in Streptomyces coelicolor A3(2). The John Innes Foundation, Norwich

    Google Scholar 

  • Ha HS, Hwang YI, Choi SU (2008) Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30:1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Horbal L, Zaburannyy N, Ostash B, Shulga S, Fedorenko V (2012) Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus. World J Microbiol Biotechnol 28(5):2095–2100

    Article  PubMed  CAS  Google Scholar 

  • Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V (2013) Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus-producer of teicoplanin, drug of last defense. J Biotechnol 168(4):367–372

    Article  PubMed  CAS  Google Scholar 

  • Hutchings MI, Hong HJ, Buttner MJ (2006) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59(3):923–935

    Article  PubMed  CAS  Google Scholar 

  • Jung HM, Kim SY, Prabhu P, Moon HJ, Kim IW, Lee JK (2008) Optimization of culture conditions and scale-up to plant scales for teicoplanin production by Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 80(3):21–27

    Article  PubMed  CAS  Google Scholar 

  • Jung HM, Jeya M, Kim SY, Moon HJ, Kumar Singh R, Zhang YW, Lee JK (2009) Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives. Appl Microbiol Biotechnol 84(3):417–428

    Article  PubMed  CAS  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105(2):425–448

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Lee JC, Park HR, Park DJ, Son KH, Yoon KH, Kim YB, Kim CJ (2003) Production of teicoplanin by a mutant of Actinoplanes teichomyceticus. Biotechnol Lett 25(7):537–540

    Article  PubMed  CAS  Google Scholar 

  • Li TL, Huang F, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11(1):107–119

    PubMed  CAS  Google Scholar 

  • Marcone GL, Carrano L, Marinelli F, Beltrametti F (2010) Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes. J Antibiot (Tokyo) 63(2):83–88

    Article  CAS  Google Scholar 

  • Medema MH, Alam MT, Breitling R, Takano E (2011) The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng Bugs 2(4):230–233

    Article  PubMed  Google Scholar 

  • Muth G, Nussbaumer B, Wohlleben W, Puhler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348

    Article  CAS  Google Scholar 

  • Shawky RM, Puk O, Wietzorrek A, Pelzer S, Takano E, Wohlleben W, Stegmann E (2007) The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. J Mol Microbiol Biotechnol 13(1–3):76–88

    Article  PubMed  CAS  Google Scholar 

  • Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26(6):917–923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150(1):95–102

    Article  PubMed  CAS  Google Scholar 

  • Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemoter 53(10):4069–4079

    Article  CAS  Google Scholar 

  • Taurino C, Frattini L, Marcone GL, Gastaldo L, Marinelli F (2011) Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin. Microb Cell Fact 10(82):1–13

    Google Scholar 

  • Truman AW, Robinson L, Spencer JB (2006) Identification of a deacetylase involved in the maturation of teicoplanin. ChemBioChem 7:1670–1675

  • Truman AW, Fan Q, Rӧttgen M, Stegmann E, Leadlay PF, Spencer JB (2008) The role of Cep15 in the biosynthesis of chloroeremomycin: reactivation of an ancestral catalytic function. Chem Biol 15(5):476–484

    Article  PubMed  CAS  Google Scholar 

  • Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM (2004) Glycopeptide antibiotics from conventional molecules to new derivatives. Drugs 64(9):913–936

    Article  PubMed  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333

    Article  PubMed  Google Scholar 

  • Wood MJ (1996) The comparative efficacy and safety of teicoplanin and vancomycin. J Antimicrob Chemother 37(2):209–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant Bg-98 F of Ministry of education and science of Ukraine (to VF) and by the DAAD Researh Fellowship to LH (PKZ A/13/03150), grant from Fondo di Ateneo per la Ricerca to FM, by Federation of European Microbiological Societies (FEMS) Research Fellowship to AK. Authors also thank the support from Consorzio Interuniversitario per le Biotecnologie (CIB). Authors are particularly grateful to Luciano Gastaldo for his assistance in fermentations.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Fedorenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horbal, L., Kobylyanskyy, A., Truman, A.W. et al. The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus . Appl Microbiol Biotechnol 98, 9295–9309 (2014). https://doi.org/10.1007/s00253-014-5969-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5969-z

Keywords

Navigation