Skip to main content
Log in

Actinomycetes biosynthetic potential: how to bridge in silico and in vivo?

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Actinomycetes genome sequencing and bioinformatic analyses revealed a large number of “cryptic” gene clusters coding for secondary metabolism. These gene clusters have the potential to increase the chemical diversity of natural products. Indeed, reexamination of well-characterized actinomycetes strains revealed a variety of hidden treasures. Growing information about this metabolic diversity has promoted further development of strategies to discover novel biologically active compounds produced by actinomycetes. This new task for actinomycetes genetics requires the development and use of new approaches and tools. Application of synthetic biology approaches led to the development of a set of strategies and tools to satisfy these new requirements. In this review, we discuss strategies and methods to discover small molecules produced by these fascinating bacteria and also discuss a variety of genetic instruments and regulatory elements used to activate secondary metabolism cryptic genes for the overproduction of these metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alduina R, Gallo G (2012) Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 2012:462049

    PubMed Central  PubMed  Google Scholar 

  2. Ali N, Herron PR, Evans MC, Dyson PJ (2002) Osmotic regulation of the Streptomyces lividans thiostrepton-inducible promoter, ptipA. Microbiology 148:381–390

    CAS  PubMed  Google Scholar 

  3. August PR, Rahn JA, Flickinger MC, Sherman DH (1996) Inducible synthesis of the mitomycin C resistance gene product (MCRA) from Streptomyces lavendulae. Gene 175:261–267

    CAS  PubMed  Google Scholar 

  4. Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772

    CAS  PubMed  Google Scholar 

  5. Barona-Gomez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283

    CAS  PubMed  Google Scholar 

  6. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  7. Bibb MJ, Cohen SN (1982) Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet 187:265–277

    CAS  PubMed  Google Scholar 

  8. Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226

    CAS  PubMed  Google Scholar 

  9. Bibb MJ, White J, Ward JM, Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545

    CAS  PubMed  Google Scholar 

  10. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:204–212

    Google Scholar 

  11. Boddy CN, Hotta K, Tse ML, Watts RE, Khosla C (2004) Precursor-directed biosynthesis of epothilone in Escherichia coli. J Am Chem Soc 126:7436–7437

    CAS  PubMed  Google Scholar 

  12. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    CAS  PubMed  Google Scholar 

  13. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003566

  14. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    CAS  PubMed  Google Scholar 

  15. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561

    CAS  PubMed  Google Scholar 

  16. Chater KF, Chandra G (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46:1–11

    CAS  PubMed  Google Scholar 

  17. Chen L, Chen J, Jiang Y, Zhang W, Jiang W, Lu Y (2009) Transcriptomics analyses reveal global roles of the regulator AveI in Streptomyces avermitilis. FEMS Microbiol Lett 298:199–207

    CAS  PubMed  Google Scholar 

  18. Chen W, Qin Z (2011) Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters. BMC Microbiol 11:243. doi:10.1186/1471-2180-11-243

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chiu ML, Folcher M, Katoh T, Puglia AM, Vohradsky J, Yun BS, Seto H, Thompson CJ (1999) Broad-spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J Biol Chem 274:20578–20586

    CAS  PubMed  Google Scholar 

  20. Clayton TM, Bibb MJ (1990) Streptomyces promoter-probe plasmids that utilize the xylE gene of Pseudomonas putida. Nucleic Acids Res 18:1077–1077

  21. Craney A, Hohenauer T, Xu Y, Navani NK, Li YF, Nodwell J (2007) A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Res 35:e46. doi:10.1093/nar/gkm086

    PubMed Central  PubMed  Google Scholar 

  22. Dangel V, Westrich L, Smith MCM, Heide L, Gust B (2010) Use of an inducible promoter for antibiotic production in a heterologous host. Appl Microbiol Biot 87:261–269

    CAS  Google Scholar 

  23. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    CAS  PubMed  Google Scholar 

  24. Deng ZX, Kieser T, Hopwood DA (1987) Activity of a Streptomyces transcriptional terminator in Escherichia coli. Nucleic Acids Res 15:2665–2675

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Denis F, Brzezinski R (1991) An improved aminoglycoside resistance gene cassette for use in Gram-negative bacteria and Streptomyces. FEMS Microbiol Lett 81:261–264

    CAS  Google Scholar 

  26. DeSanti CL, Strohl WR (2003) Characterization of the Streptomyces sp strain C5 snp locus and development of snp-derived expression vectors. Appl Environ Microb 69:1647–1654

    CAS  Google Scholar 

  27. Du D, Zhu Y, Wei J, Tian Y, Niu G, Tan H (2013) Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97:6383–6396

    CAS  PubMed  Google Scholar 

  28. Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A (2008) Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biot 78:1065–1070

    CAS  Google Scholar 

  29. Fornwald JA, Schmidt FJ, Adams CW, Rosenberg M, Brawner ME (1987) Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Proc Natl Acad Sci USA 84:2130–2134

    CAS  PubMed  Google Scholar 

  30. Frasch HJ, Medema MH, Takano E, Breitling R (2013) Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice. Curr Opin Biotechnol. doi:10.1016/j.copbio.2013.03.006

    PubMed  Google Scholar 

  31. Gatewood ML, Bralley P, Weil MR, Jones GH (2012) RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III. J Bacteriol 194:2228–2237

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7:481. doi:10.1038/msb.2011.14

    PubMed Central  PubMed  Google Scholar 

  33. Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215

    CAS  PubMed  Google Scholar 

  34. Gomez-Escribano JP BM (2013) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Indust Microbiol Biotechnol. doi:10.1007/s10295-013-1348-5

  35. Gomez-Escribano JP, Song LJ, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3:2716–2720

    CAS  Google Scholar 

  36. Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiol-Sgm 156:2343–2353

    CAS  Google Scholar 

  37. Gust B, Chandra G, Jakimowicz D, Tian YQ, Bruton CJ, Chater KF (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128

    CAS  PubMed  Google Scholar 

  38. Hatanaka T, Onaka H, Arima J, Uraji M, Uesugi Y, Usuki H, Nishimoto Y, Iwabuchi M (2008) pTONA5: a hyperexpression vector in streptomycetes. Protein Expres Purif 62:244–248

    CAS  Google Scholar 

  39. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci USA 101:14031–14035

    CAS  PubMed  Google Scholar 

  40. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microb 78:1804–1812

    CAS  Google Scholar 

  41. Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF (2002) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46:917–932

    CAS  PubMed  Google Scholar 

  42. Hindle Z, Smith CP (1994) Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12:737–745

    CAS  PubMed  Google Scholar 

  43. Horinouchi S, Beppu T (1985) Construction and application of a promoter-probe plasmid that allows chromogenic identification in Streptomyces lividans. J Bacteriol 162:406–412

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Horinouchi S, Furuya K, Nishiyama M, Suzuki H, Beppu T (1987) Nucleotide sequence of the streptothricin acetyltransferase gene from Streptomyces lavendulae and its expression in heterologous hosts. J Bacteriol 169:1929–1937

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hutter H (2006) Fluorescent reporter methods. Methods Mol Biol 351:155–173

    CAS  PubMed  Google Scholar 

  46. Ikeda H, Shin-Ya K, Omura S (2013) Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol. doi:10.1007/s10295-013-1327-x

    PubMed  Google Scholar 

  47. Ingham CJ, Hunter IS, Smith MCM (1995) Rho-independent terminators without 3’ poly-U tails from the early region of actinophage øC31. Nucleic Acids Res 23:370–376

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Ingram C, Brawner M, Youngman P, Westpheling J (1989) xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol 171:6617–6624

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ, Hu WS (2008) Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS ONE 3:e2097. doi:10.1371/journal.pone.0002097

    PubMed Central  PubMed  Google Scholar 

  50. Joshi MV, Bignell DR, Johnson EG, Sparks JP, Gibson DM, Loria R (2007) The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol Microbiol 66:633–642

    CAS  PubMed  Google Scholar 

  51. Kataoka M, Tatsuta T, Suzuki I, Kosono S, Seki T, Yoshida T (1996) Development of a temperature-inducible expression system for Streptomyces spp. J Bacteriol 178:5540–5542

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7:794–802

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, Smith MCM (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res 34:e20. doi:10.1093/nar/gnj019

    PubMed Central  PubMed  Google Scholar 

  54. King AA, Chater KF (1986) The expression of the Escherichia coli lacZ gene in Streptomyces. J Gen Microbiol 132:1739–1752

    CAS  PubMed  Google Scholar 

  55. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-Ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396

    CAS  PubMed  Google Scholar 

  56. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651

    CAS  PubMed  Google Scholar 

  57. Kuhstoss S, Rao RN (1991) A thiostrepton-inducible expression vector for use in Streptomyces spp. Gene 103:97–99

    CAS  PubMed  Google Scholar 

  58. Labes G, Bibb M, Wohlleben W (1997) Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn1696 as reporter. Microbiology 143:1503–1512

    CAS  PubMed  Google Scholar 

  59. Lakey JH, Lea EJ, Rudd BA, Wright HM, Hopwood DA (1983) A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity. J Gen Microbiol 129:3565–3573

    CAS  PubMed  Google Scholar 

  60. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263

    CAS  PubMed  Google Scholar 

  61. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    CAS  PubMed  Google Scholar 

  62. Liu WT, Kersten RD, Yang YL, Moore BS, Dorrestein PC (2011) Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J Am Chem Soc 133:18010–18013

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lussier FX, Denis F, Shareck F (2010) Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl Environ Microbiol 76:967–970

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Magdevska V, Gaber R, Goranovic D, Kuscer E, Boakes S, Duran Alonso MB, Santamaria RI, Raspor P, Leadlay PF, Fujs S, Petkovic H (2010) Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. J Microbiol Methods 83:111–119

    CAS  PubMed  Google Scholar 

  65. Malpartida F, Niemi J, Navarrete R, Hopwood DA (1990) Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93:91–99

    CAS  PubMed  Google Scholar 

  66. McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco AM, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496

    CAS  PubMed  Google Scholar 

  67. McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262:1546–1550

    CAS  PubMed  Google Scholar 

  68. McDowell JC, Roberts JW, Jin DJ, Gross C (1994) Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266:822–825

    CAS  PubMed  Google Scholar 

  69. Mitra A, Kesarwani AK, Pal D, Nagaraja V (2011) WebGeSTer DB—a transcription terminator database. Nucleic Acids Res 39:129–135

    Google Scholar 

  70. Motamedi H, Shafiee A, Cai SJ (1995) Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160:25–31

    CAS  PubMed  Google Scholar 

  71. Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171:1459–1466

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) β-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microb 77:5370–5383

    CAS  Google Scholar 

  73. Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634

    CAS  PubMed  Google Scholar 

  74. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D (2011) ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8:11–13

    CAS  PubMed  Google Scholar 

  75. Nguyen KD, Au-Young SH, Nodwell JR (2007) Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 58:167–173

    CAS  PubMed  Google Scholar 

  76. Nikodinovic J, Priestley ND (2006) A second generation snp-derived Escherichia coli-Streptomyces shuttle expression vector that is generally transferable by conjugation. Plasmid 56:223–227

    CAS  PubMed  Google Scholar 

  77. Ochi K, Tanaka Y, Tojo S (2013) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Indust Microbiol Biotechnol. doi:10.1007/s10295-013-1349-4

  78. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220

    CAS  PubMed  Google Scholar 

  79. Ostash B, Ostash I, Zhu L, Kharel MK, Luzhetskyy A, Bechthold A, Walker S, Rohr J, Fedorenko V (2010) Properties of lanK-based regulatory circuit involved in landomycin biosynthesis in Streptomyces cyanogenus S136. Russ J Genet 46:530–535

    CAS  Google Scholar 

  80. Ozaki T, Nishiyama M, Kuzuyama T (2013) Novel tryptophan metabolism by a potential gene cluster that is widely distributed among actinomycetes. J Biol Chem 288:9946–9956

    CAS  PubMed  Google Scholar 

  81. Page N, Kluepfel D, Shareck F, Morosoli R (1996) Increased xylanase yield in Streptomyces lividans: dependence on number of ribosome-binding sites. Nat Biotechnol 14:756–759

    CAS  PubMed  Google Scholar 

  82. Paget MSB, Hintermann G, Smith CP (1994) Construction and application of streptomycete promoter probe vectors which employ the Streptomyces glaucescens tyrosinase-encoding gene as reporter. Gene 146:105–110

    CAS  PubMed  Google Scholar 

  83. Park HM, Kim BG, Chang D, Malla S, Joo HS, Kim EJ, Park SJ, Sohng JK, Kim PI (2013) Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius. Appl Microbiol Biotechnol 97:1213–1222

    CAS  PubMed  Google Scholar 

  84. Pawlik K, Kotowska M, Kolesinski P (2010) Streptomyces coelicolor A3(2) produces a new yellow pigment associated with the polyketide synthase Cpk. J Mol Microbial Biotechnol 19:147–151

    CAS  Google Scholar 

  85. Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M (2012) A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 40:8662–8673

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of Escherichia coli. Science 291:1790–1792

    CAS  PubMed  Google Scholar 

  87. Pulido D, Jimenez A (1987) Optimization of gene-expression in Streptomyces lividans by a transcription terminator. Nucleic Acids Res 15:4227–4240

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Pulido D, Jimenez A, Salas M, Mellado RP (1987) A Bacillus subtilis Phage Phi29 transcription terminator is efficiently recognized in Streptomyces lividans. Gene 56:277–282

    CAS  PubMed  Google Scholar 

  89. Pulido D, Vara JA, Jimenez A (1986) Cloning and expression in biologically active form of the gene for human interferon alpha-2 in Streptomyces lividans. Gene 45:167–174

    CAS  PubMed  Google Scholar 

  90. Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    CAS  PubMed  Google Scholar 

  91. Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MCA, Smith MCM (2005) Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res 33:e87. doi:10.1093/nar/gni086

    PubMed Central  PubMed  Google Scholar 

  92. Romby P, Charpentier E (2010) An overview of RNAs with regulatory functions in Gram-positive bacteria. Cell Mol Life Sci 67:217–237

    CAS  PubMed  Google Scholar 

  93. Rowe CJ, Cortes J, Gaisser S, Staunton J, Leadley PF (1998) Construction of new vectors for high-level expression in actinomycetes. Gene 216:215–223

    CAS  PubMed  Google Scholar 

  94. Rudd BA, Hopwood DA (1980) A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. J Gen Microbiol 119:333–340

    CAS  PubMed  Google Scholar 

  95. Rudolph MM, Vockenhuber MP, Suess B (2013) Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 159:1416–1422

    CAS  PubMed  Google Scholar 

  96. Saleh O, Bonitz T, Flinspach K, Kulik A, Burkard N, Muhlenweg A, Vente A, Polnick S, Lammerhofer M, Gust B, Fiedler HP, Heide L (2012) Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines. Medchemcomm 3:1009–1019

    CAS  Google Scholar 

  97. Santangelo TJ, Artsimovitch I (2011) Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol 9:319–329

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36:493–498

    CAS  PubMed  Google Scholar 

  99. Scholtissek S, Grosse F (1987) A cloning cartridge of lambda t(o) terminator. Nucleic Acids Res 15:3185

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biot 90:615–623

    CAS  Google Scholar 

  101. Sekurova ON, Brautaset T, Sletta H, Borgos SEF, Jakobsen OM, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Seo SW, Yang JS, Kim I, Yang J, Min BE, Kim S, Jung GY (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74

    CAS  PubMed  Google Scholar 

  103. Shao ZY, Luo YZ, Zhao HM (2011) Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol Biosyst 7:1056–1059

    CAS  PubMed  Google Scholar 

  104. Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE (2013) Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem Biol. doi:10.1021/cb4002798

    PubMed  Google Scholar 

  105. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng. doi:10.1016/j.ymben.2013.07.006

    PubMed  Google Scholar 

  106. Sohaskey CD, Im H, Nelson AD, Schauer AT (1992) Tn4556 and luciferase—synergistic tools for visualizing transcription in Streptomyces. Gene 115:67–71

    CAS  PubMed  Google Scholar 

  107. Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GL (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754–14755

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Stevens DC, Conway KR, Pearce N, Villegas-Penaranda LR, Garza AG, Boddy CN (2013) Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli. PLoS ONE 8:e64858. doi:10.1371/journal.pone.0064858

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Sudek S, Haygood MG, Youssef DT, Schmidt EW (2006) Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 72:4382–4387

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sun JH, Kelemen GH, Fernandez-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145:2221–2227

    CAS  PubMed  Google Scholar 

  112. Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479

    CAS  PubMed  Google Scholar 

  113. Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133–137

    CAS  PubMed  Google Scholar 

  114. Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–1832

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Tanaka Y, Hosaka T, Ochi K (2010) Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J Antibiot 63:477–481

    CAS  PubMed  Google Scholar 

  116. Tsao SW, Rudd BA, He XG, Chang CJ, Floss HG (1985) Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot 38:128–131

    CAS  PubMed  Google Scholar 

  117. Uguru GC, Mondhe M, Goh S, Hesketh A, Bibb MJ, Good L, Stach JE (2013) Synthetic RNA silencing of actinorhodin biosynthesis in Streptomyces coelicolor A3(2). PLoS One 8:e67509. doi:10.1371/journal.pone.0067509

  118. van Wezel GP, White J, Hoogvliet G, Bibb MJ (2000) Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Mol Microb Biotech 2:551–556

    Google Scholar 

  119. Vockenhuber MP, Sharma CM, Statt MG, Schmidt D, Xu Z, Dietrich S, Liesegang H, Mathews DH, Suess B (2011) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol 8:468–477

    CAS  PubMed  Google Scholar 

  120. Vujaklija D, Ueda K, Hong SK, Beppu T, Horinouchi S (1991) Identification of an A-factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Mol Gen Genet 229:119–128

    CAS  PubMed  Google Scholar 

  121. Wang L, Zhao Y, Liu Q, Huang Y, Hu C, Liao G (2012) Improvement of A21978C production in Streptomyces roseosporus by reporter-guided rpsL mutation selection. J Appl Microbiol 112:1095–1101

    CAS  PubMed  Google Scholar 

  122. Wang W, Li X, Wang J, Xiang S, Feng X, Yang K (2013) An engineered strong promoter for streptomycetes. Appl Environ Microbiol 79:4484–4492

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ (1986) Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478

    CAS  PubMed  Google Scholar 

  124. Weiser J, Buriankova K, Kalachova L, Branny P, Pernodet JL (2006) Construction and testing of a bacterial luciferase reporter gene system for in vivo measurement of nonsense suppression in Streptomyces. Folia Microbiol 51:62–64

    CAS  Google Scholar 

  125. Wenzel SC, Gross F, Zhang YM, Fu J, Stewart AF, Muller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol 12:349–356

    CAS  PubMed  Google Scholar 

  126. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4:417–426

    CAS  PubMed  Google Scholar 

  127. Willemse J, van Wezel GP (2009) Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS ONE 4:e4242. doi:10.1371/journal.pone.0004242

    PubMed Central  PubMed  Google Scholar 

  128. Wright LF, Hopwood DA (1976) Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 95:96–106

    CAS  PubMed  Google Scholar 

  129. Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448

    CAS  PubMed  Google Scholar 

  130. Yadav G, Gokhale RS, Mohanty D (2009) Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol 5:e1000351. doi:10.1371/journal.pcbi.1000351

    PubMed Central  PubMed  Google Scholar 

  131. Yague P, Rodriguez-Garcia A, Lopez-Garcia MT, Martin JF, Rioseras B, Sanchez J, Manteca A (2013) Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes. PLoS ONE 8:e60665. doi:10.1371/journal.pone.0060665

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yun BS, Hidaka T, Kuzuyama T, Seto H (2001) Thiopeptide non-producing Streptomyces species carry the tipA gene: a clue to its function. J Antibiot 54:375–378

    CAS  PubMed  Google Scholar 

  133. Zhang YM, Buchholz F, Muyrers JPP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    CAS  PubMed  Google Scholar 

  134. Zhou M, Jing XY, Xie PF, Chen WH, Wang T, Xia HY, Qin ZJ (2012) Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 333:169–179

    CAS  PubMed  Google Scholar 

  135. Zotchev SB, Sekurova ON, Katz L (2012) Genome-based bioprospecting of microbes for new therapeutics. Curr Opin Biotechnol 23:941–947

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the AL group was supported through funding from the ERC starting grant EXPLOGEN No. 281623 and the DFG grant (Lu1524/2-1). We thank Dr. Stephanie Brown (JIC, Norwich, UK) for help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Luzhetskyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebets, Y., Brötz, E., Tokovenko, B. et al. Actinomycetes biosynthetic potential: how to bridge in silico and in vivo?. J Ind Microbiol Biotechnol 41, 387–402 (2014). https://doi.org/10.1007/s10295-013-1352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1352-9

Keywords

Navigation