Skip to main content
Log in

A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng’s miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone “dammaranediol,” dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next “anti-neoplastic pharmacophores,” with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akalezi CO, Liu S, Li QS, Yu JT, Zhong JJ (1999) Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension culture of Panax ginseng. Process Biochem 34:639–642

    Article  CAS  Google Scholar 

  • An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, Jin F, Yu H, Chin YW, Lee HK, Im WT (2010) Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol 76:5827–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asaka I, Ii I, Hirotani M, Asada Y, Furuya T (1994) Ginsenoside contents of plantlets regenerated from Panax ginseng embryoids. Phytochemistry 36:61–63

    Article  CAS  Google Scholar 

  • Bae EA, Han MJ, Kim EJ, Kim DH (2004) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharma Res 27:61–67

    Article  CAS  Google Scholar 

  • Bae EA, Han MJ, Shin YW, Kim DH (2006a) Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol Pharm Bull 29:1862–1867

    Article  CAS  PubMed  Google Scholar 

  • Bae KH, Choi YE, Shin CG, Kim YY, Kim Y (2006b) Enhanced ginsenoside productivity by combination of ethephon and methyl jasmonate in ginseng (Panax ginseng CA Meyer) adventitious root cultures. Biotechnol Lett 28:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Biswas T (2016) Elicitation of in vitro secondary metabolite production and its transcript expression profiling in Panax species. PhD Thesis, Jawarharlal Nehru University, Delhi, India

  • Biswas T, Singh M, Mathur AK, Mathur A (2015) A dual purpose cell line of an Indian congener of ginseng—Panax sikkimensis with distinct ginsenoside and anthocyanin production profiles. Protoplasma 252:697–703

    Article  CAS  PubMed  Google Scholar 

  • Biswas T, Kalra A, Mathur AK, Lal RK, Singh M, Mathur A (2016) Elicitors’ influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Appl Microbiol Biotechnol 100:4909–4922

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, Jee HS, Lee NK, Park SH, Lee NW, Paik HD (2009) Optimization of the enzymatic production of 20 (S)-ginsenoside Rg 3 from white ginseng extract using response surface methodology. New Biotechnol 26:181–186

    Article  CAS  Google Scholar 

  • Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 77:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC (2006) Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 28:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Na J, Kim MK, Bang M, Yang D (2007) Microbial conversion of Ginsenoside Rb1 to minor Ginsenoside F 2 and Gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 17:1937–1943

    CAS  PubMed  Google Scholar 

  • Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC (2008) Conversion of major ginsenoside Rb1 to 20 (S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69:218–224

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Ji GE (2005) Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27:765–771

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Kim DH, Ji GE (2005) Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol Pharm Bull 28:2102–2105

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Lee BH, You HJ, Park MS, Ji GE (2006) Differential transformation of ginsenosides from Panax ginseng by lactic acid bacteria. J Microbiol Biotechnol 16:1629–1633

    CAS  Google Scholar 

  • Choi TE, Liu QM, Yang JE, Sun S, Kim SY, Yi TH, Im WT (2010) Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 48:760–766

    Article  PubMed  Google Scholar 

  • Choi HJ, Kim EA, Kim DH, Shin KS (2014a) The bioconversion of red ginseng ethanol extract into compound K by Saccharomyces cerevisiae HJ-014. Mycobiol 42:256–261

    Article  Google Scholar 

  • Choi HS, Kim SY, Park Y, Jung EY, Suh HJ (2014b) Enzymatic transformation of ginsenosides in Korean red ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex. J Ginseng Res 38:264–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi P, Park JY, Kim T, Park SH, Kim HK, Kang KS, Ham J (2015) Improved anticancer effect ofginseng extract by microwave-assisted processing through the generation of ginsenosides Rg3, Rg5 and Rk1. J Functional Food 14:613–622

    Article  CAS  Google Scholar 

  • Christensen LP (2009) Ginsenosides chemistry, biosynthesis, analysis and potential health effects. Adv Food Nutr Res 55:1–99

    Article  CAS  PubMed  Google Scholar 

  • Chun JH, Adhikari PB, Park SB, Han JY, Choi YE (2015) Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47. Plant Cell Rep 34:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Cui JF, Björkhem I, Eneroth P (1997) Gas chromatographic-mass spectrometric determination of 20 (S)-protopanaxadiol and 20 (S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations. J Chromatography B 689:349–355

    Article  CAS  Google Scholar 

  • Cui CH, Kim SC, Im WT (2013) Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl Microbiol Biotechnol 97:649–659

    Article  CAS  PubMed  Google Scholar 

  • Cui CH, Kim JK, Kim SC, Im WT (2014) Characterization of a ginsenoside-transforming β-glucosidase from Paenibacillus mucilaginosus and its application for enhanced production of minor ginsenoside F 2. PLoS One 9:85727

    Article  CAS  Google Scholar 

  • Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabol Engg 20:146–156

    Article  CAS  Google Scholar 

  • Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, Liu T, Huang L, Zhang X (2014) Producing aglycons of ginsenosides in bakers’ yeast. Sci Rep 4:3698

    PubMed  PubMed Central  Google Scholar 

  • Dewir YH, Chakrabarty D, Wu CH, Hahn EJ, Jeon WK, Paek KY (2010) Influences of polyunsaturated fatty acids (PUFAs) on growth and secondary metabolite accumulation in Panax ginseng CA Meyer adventitious roots cultured in air-lift bioreactors. S Afr J Bot 76:354–358

    Article  CAS  Google Scholar 

  • Du J, Cui CH, Park SC, Kim JK, Yu HS, Jin FX, Sun C, Kim SC, Im WT (2014) Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg 2 (S). PLoS One 9:e96914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu Y, Yin Z, Wu L, Yin C (2014) Diversity of cultivable β-glycosidase-producing micro-organisms isolated from the soil of a ginseng field and their insenosides-hydrolysing activity. Lett Appl Microbiol 58:138–144

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhu C, Jia W, Gao W, Qiu M, Zhang Y, Xiao P (2005) Induction and characterization of adventitious roots directly from the explants of Panax notoginseng. Biotechnol Lett 27:1771–1775

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Xu W, Fang Q, Liang F, Jin R, Wu D, Tai G, Zhou Y (2013) Efficient biotransformation for preparation of pharmaceutically active ginsenoside compound K by Penicillium oxalicum sp. 68. Ann Microbiol 63:139–149

    Article  CAS  Google Scholar 

  • Gao J, Hu Y, Meng Y, Meng F, Guo X, Wang N, Wei M, Zhou Y (2015) Simple and efficient preparation of ginsenoside (S)-Rg2 from ginsenoside Re by biotransformation with Cellulosimicrobium sp. 21. Biocatal Biotransform 33:51–60

    Article  CAS  Google Scholar 

  • Gwak YS, Han JY, Adhikari PB, Ahn CH, Choi YE (2017) Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. Planta. doi:10.1007/s00425-017-2668-x

    PubMed  Google Scholar 

  • Ha YW, Lim SS, Ha IJ, Na YC, Seo JJ, Shin H, Son SH, Kim YS (2007) Preparative isolation of four ginsenosides from Korean red ginseng (steam-treated Panax ginseng CA Meyer), by high-speed counter-current chromatography coupled with evaporative light scattering detection. J Chromatography A 1151:37–44

    Article  CAS  Google Scholar 

  • Han BH, Park MH, Han YN, Woo LK, Sankawa U, Yahara S, Tanaka O (1982) Degradation of ginseng saponins under mild acidic conditions. Planta Med 44:146–149

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Sun B, Jiang B, Hu X, Spranger MI, Zhang Y, Zhao Y (2010) Microbial transformation of ginsenosides Rb1, Rb3 and Rc by Fusarium sacchari. J Appl Microbiol 109:792–798

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Wang HY, Choi YE (2014) Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 95(2):153–157

    Article  CAS  PubMed  Google Scholar 

  • He YP, Yue CJ (2010) Establishment of measurement system of ginsenoside Rh2 glycosyltransferase activity. Med Plant 1:58–60

    CAS  Google Scholar 

  • Hong CE, Lyu SY (2011) Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune Network 11:42–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong SY, Oh JH, Lee I (2011) Simultaneous enrichment of deglycosylated ginsenosides and monacolin K in red ginseng by fermentation with Monascus pilosus. Biosci Biotechnol Biochem 75:1490–1495

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Xue J, Wang C, Liu L, Zhang D, Wang Z, Li W, Zheng Y, Sung C (2012) Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806. World J Microbiol Biotechnol 28:1807–1811

    Article  CAS  PubMed  Google Scholar 

  • Hu FX, Zhong JJ (2007) Role of jasmonic acid in alteration of ginsenoside heterogeneity in elicited cell cultures of Panax notoginseng. J Biosci Bioeng 104:513–516

    Article  CAS  PubMed  Google Scholar 

  • Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118

    Article  CAS  Google Scholar 

  • Hu X, Neill S, Cai W, Tang Z (2003a) Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plant 118:414–421

    Article  CAS  Google Scholar 

  • Hu X, Neill SJ, Cai W, Tang Z (2003b) Nitric oxide mediates elicitor induced saponin synthesis in cell cultures of Panax ginseng. Funct Plant Biol 30:901–907

    Article  CAS  Google Scholar 

  • Hu Y, Luan H, Hao D, Xiao H, Yang S, Yang L (2007) Purification and characterization of a novel ginsenoside-hydrolyzing β-D-glucosidase from the China white jade snail (Achatina fulica). Enzyme Microbial Tech 40:1358–1366

    Article  CAS  Google Scholar 

  • Huang C, Zhong JJ (2013) Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochem 48:1227–1234

    Article  CAS  Google Scholar 

  • Huang C, Qian ZG, Zhong JJ (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36

    Article  CAS  PubMed  Google Scholar 

  • Im GJ, Chang JW, Choi J, Chae SW, Ko EJ, Jung HH (2010) Protective effect of Korean red ginseng extract on cisplatin ototoxicity in HEI-OC1 auditory cells. Phytother Res 24:614–621

    CAS  PubMed  Google Scholar 

  • Jeong GT, Park DH, Ryu HW, Hwang B, Woo JC, Kim D, Kim SW (2005) Production of antioxidant compounds by culture of Panax ginseng C.A. Meyer hairy roots: I. Enhanced production of secondary metabolite in hairy root cultures by elicitation. Appl Biochem Biotechnol 121–124:1147–1157

    Article  PubMed  Google Scholar 

  • Jeong CS, Murthy HN, Hahn EJ, Paek KY (2008) Improved production of ginsenosides in suspension cultures of ginseng by medium replenishment strategy. J Biosci Bioeng 105:288–291

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Kim YJ, Hoang VA, Young Jung S, Nguyen NL, Woo Min J, Wang C, Yang DC (2014) Flavobacterium panaciterrae sp. nov., a β-glucosidase producing bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J General Appl Microbiol 60:59–64

    Article  CAS  Google Scholar 

  • Jung SC, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im WT, Lee JH, Choi G, Kim SC (2014) Two ginseng UDP glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55:2177–2188

    Article  CAS  PubMed  Google Scholar 

  • Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, Kang C, Cho Y, Kim SY (2009) Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol 123:446–451

    Article  CAS  PubMed  Google Scholar 

  • Kim DH (2012a) Chemical diversity of Panax ginseng, Panax quinquefolium and Panax notoginseng. J Ginseng Res 36:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS (2007a) Simultaneous quantification of 14 ginsenosides in Panax ginseng CA Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharmaceut Biomed Anal 4:164–170

    Article  CAS  Google Scholar 

  • Kim YS, Yeung EC, Hahn EJ, Paek KY (2007b) Combined effects of phytohormone, indole-3-butyric acid, and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginseng C.A. Meyer. Biotechnol Lett 29:1789–1792

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kang SA, Han SM, Shim I (2009a) Comparison of the anti-obesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res 23:78–85

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009b) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Organ Cult 98:25–33

    Article  CAS  Google Scholar 

  • Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y (2009c) Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice. European J Pharmacol 602:148–156

    Article  CAS  Google Scholar 

  • Kim EH, Lee MJ, Kim IH, Pyo SN, Choi KT, Rhee DK (2010) Anti-apoptotic effects of red ginseng on oxidative stress induced by hydrogen peroxide in SK-N-SH cells. J Ginseng Res 34:138–144

    Article  Google Scholar 

  • Kim HJ, Lee SG, Chae IG, Kim MJ, Im NK, Yu MH, Lee EJ, Lee IS (2011a) Antioxidant effects of fermented red ginseng extracts in streptozotocin-induced diabetic rats. J Ginseng Res 35:129–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kim DH, Kim BK, Yoon SK, Kim MH, Lee JY, Kim HO, Park YM (2011b) Effects of topically applied Korean red ginseng and its genuine constituents on atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol 11:280–285

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Yoo MH, Lee GW, Choi JG, Kim KR, Oh DK (2011c) Ginsenoside F1 production from ginsenoside Rg1 by a purified β-glucosidase from Fusarium moniliforme var. subglutinans. Biotechnol Lett 33:2457–2461

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Cui CH, Yoon MH, Kim SC, Im WT (2012a) Bioconversion of major ginsenosides Rg 1 to minor ginsenoside F 1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J Biotechnol 61:294–301

    Article  CAS  Google Scholar 

  • Kim SH, Min JW, Quan LH, Lee S, Yang DU, Yang DC (2012b) Enzymatic transformation of ginsenoside Rb1 by Lactobacillus pentosus strain 6105 from kimchi. J Ginseng Res 36:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DS, Song M, Kim SH, Jang DS, Kim JB, Ha BK, Kim SH, Lee KJ, Kang SY, Jeong IY (2013a) The improvement of ginsenoside accumulation in Panax ginseng as a result of γ-irradiation. J Ginseng Res 37:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Kim P, Shin CY (2013b) A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37:8–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Choi TE, Liu QM, Park HY, Yi TH, Yoon MH, Kim SC, Im WT (2013c) Mucilaginibacter ginsenosidivorax sp. nov., with ginsenoside converting activity isolated from sediment. J Microbiol 5:394–399

    Article  CAS  Google Scholar 

  • Kim JK, Cui CH, Liu Q, Yoon MH, Kim SC, Im WT (2013d) Mass production of the ginsenoside Rg 3 (S) through the combinative use of two glycoside hydrolases. Food Chem 141:1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, He D, Liu QM, Park HY, Jung MS, Yoon MH, Kim SC, Im WT (2013e) Novosphingobium ginsenosidimutans sp. nov., with the ability to convert ginsenoside. J Microbiol Biotechnol 23:444–450

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Yoo NH, Kim GS, Kim YC, Bang KH, Hyun DY, Kim SH, Kim MY (2013f) Stimulation of Rg3 ginsenoside biosynthesis in ginseng hairy roots elicited by methyl jasmonate. Plant Cell Tissue Organ Cult 112:87–93

    Article  CAS  Google Scholar 

  • Kim YJ, Lee MY, Son HY, Park BK, Ryu SY, Jung JY (2014a) Red ginseng ameliorates acute cisplatin-induced nephropathy. Planta Med 80:645–654

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Lee OR, Oh JY, Jang MG, Yang DC (2014b) Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin producing ginseng. Plant Physiol 165:373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Kim YB, Uddin MR, Lee S, Kim SU, Park SU (2014c) Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth Biol 3:773–779

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33:717–735

    Article  CAS  PubMed  Google Scholar 

  • Kobashi K, Akao T, Hattori M, Namba T (1992) Metabolism of drugs by intestinal bacteria. Bifidobact Microflora 11:9–23

    Article  Google Scholar 

  • Kochan E, Chmiel A (2011) Dynamics of ginsenoside biosynthesis in suspension culture of Panax quinquefolium. Acta Physiol Plant 33:911–915

    Article  CAS  Google Scholar 

  • Kochan E, Królicka O, Chmiel A (2012) Panax quinquefolium hairy roots cultivated in flasks and nutrient sprinkle bioreactor. Acta Physiol Plant 34:1513–1518

    Article  CAS  Google Scholar 

  • Kochan E, Szymańska G, Szymczyk P (2014) Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiol Plant 36:613–619

    Article  CAS  Google Scholar 

  • Kwak Y-S, Kyung J-S, Kim JS, Chooul, Rhee M-H (2010) Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng. Biol Pharm Bull 33(3):468–472

  • Lee J, Lee E, Kim D, Lee J, Yoo J, Koh B (2009) Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol 122:143–148

    Article  CAS  PubMed  Google Scholar 

  • Lee JI, Ha YW, Choi TW, Kim HJ, Kim SM, Jang HJ, Choi JH, Choi MH, Chung BC, Sethi G, Kim SH (2011) Cellular uptake of ginsenosides in Korean white ginseng and red ginseng and their apoptotic activities in human breast cancer cells. Planta Med 77:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lee GW, Kim KR, Oh DK (2012) Production of rare ginsenosides (compound Mc, compound Y and aglycon protopanaxadiol) by β-glucosidase from Dictyoglomus turgidum that hydrolyzes β-linked, but not α-linked, sugars in ginsenosides. Biotechnol Lett 34:1679–1686

    Article  CAS  PubMed  Google Scholar 

  • Lee GW, Yoo MH, Shin KC, Kim KR, Kim YS, Lee KW, Oh DK (2013a) β-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides. Appl Microbiol Biotechnol 97:6315–6324

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park D, Yoon M (2013b) Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food Chem Toxicol 53:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Shin KC, Lee GW, Oh DK (2014a) Production of aglycone protopanaxatriol from ginseng root extract using Dictyoglomus turgidum β-glycosidase that specifically hydrolyzes the xylose at the C-6 position and the glucose in protopanaxatriol-type ginsenosides. Appl Microbiol Biotechnol 98:3659–3667

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kang SM (2014b) Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 6:517–529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS (2015) Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of β-glucosidase gene from Paenibacillus mucilaginosus. J Agr Food Chem 64:2506–2512

    Article  CAS  Google Scholar 

  • Li D, Zhang Q, Zhou Z, Zhao F, Lu W (2016) Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli. Biotechnol Lett 38:603–609

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Wu J, Li Y, Li J, Ouyang Y, He Z, Zhao S (2014) Enhancement of ginsenoside biosynthesis and secretion by Tween 80 in Panax ginseng hairy roots. Biotechnol Appl Biochem 62:193–199

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhong JJ (1996) Effects of potassium ion on cell growth and production of ginseng saponin and polysaccharide in suspension cultures of Panax ginseng. J Biotechnol 52:121–126

    Article  CAS  Google Scholar 

  • Liu S, Zhong JJ (1998) Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochem 33:69–74

    Article  CAS  Google Scholar 

  • Liu L, Gu LJ, Zhang DL, Wang Z, Wang CY, Li Z, Sung CK (2010a) Microbial conversion of rare ginsenoside Rf to 20 (S)-protopanaxatriol by Aspergillus niger. Biosci Biotechnol Biochem 74:96–100

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhu XM, Wang QJ, Zhang DL, Fang ZM, Wang CY, Wang Z, Sun BS, Wu H, Sung CK (2010b) Enzymatic preparation of 20 (S, R)-protopanaxadiol by transformation of 20 (S, R)-Rg3 from black ginseng. Phytochemistry 71:1514–1520

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX (2015a) Preparation of minor ginsenosides C-Mc, CY, F2, and CK from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g 848. J Ginseng Res 39:221–229

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Zuo K, Yu HS, Sun CK, Zhang TY, Xu LQ, Jin YH, Im WT, Jin XF (2015b) Preparation of minor ginsenosides C-Mx and CK from notoginseng leaf ginsenosides by a special ginsenosidase type-I. Process Biochem 50:2158–2167

    Article  CAS  Google Scholar 

  • Liu XB, Liu M, Tao XY, Zhang ZX, Wang FQ, Wei DZ (2015c) Metabolic engineering of Pichia pastoris for the production of dammarenediol-II. J Biotechnol 216:47–55

    Article  CAS  PubMed  Google Scholar 

  • Lu MB, Wong HL, Teng WL (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:674–677

    CAS  Google Scholar 

  • Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, Niu Y, Cheng X, Xu H, Li C, Liu J (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12:S5–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallol A, Cusido RM, Palazon J, Bonfill M, Morales C, Pinol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365–371

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Shukla YN, Pal M, Ahuja PS, Uniyal GC (1994) Saponin production in callus and cell suspensions cultures of Panax quinquefolium. Phytochemistry 35:1221–1225

    Article  CAS  Google Scholar 

  • Mathur A, Mathur AK, Pal M, Uniyal GC (1999) Comparison of qualitative and quantitative in vitro ginsenoside production in callus cultures of three Panax species. Planta Med 65:484–486

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Mathur AK, Gangwar A (2000a) Saponin production in cell/callus cultures of Panax species. In: Oleszek W, Marston A (eds) Saponins in food, feedstuffs and medicinal plants. Proceedings of the Phytochemical Society of Europe (45). Kluwer Academic Publishers, London, pp 171–179

    Chapter  Google Scholar 

  • Mathur A, Mathur AK, Gangwar A (2001a) In vitro plantlet regeneration in Panax sikkimensis. Planta Med 67:181–183

  • Mathur A, Mathur AK, Uniyal GC, Pal M, Sangwan RS (2001b) A process for the development of a stable high yielding callus line of Panax quinquefolium. US PATENT 6326202

  • Mathur A, Gangwar A, Mathur AK, Sangwan RS, Jain DC (2002) A procedure for the development of an anthocyanin producing callus line of Panax sikkimensis (Indian species of ginseng). US PATENT 6368860

  • Mathur A, Mathur AK, Sangwan RS, Gangwar A, Uniyal GC (2003) Differential responses, ginsenoside metabolism and RAPD patterns of three Panax species. Genet Res Crop Evol 50:245–252

    Article  CAS  Google Scholar 

  • Mathur A, Gangwar A, Mathur AK, Verma P, Uniyal GC, Lal RK (2010a) Growth kinetics and ginsenosides production in transformed hairy roots of American ginseng—Panax quinquefolium L. Biotechnol Lett 32:457–461

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Mathur AK, Gangwar A, Verma P, Sangwan RS (2010b) Anthocyanin production in a callus line of Panax sikkimensis ban. In Vitro Cell Develop Biol-Plant 46:13–21

    Article  CAS  Google Scholar 

  • Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, Paek KY (2014) Ginsenosides: prospective for sustainable biotechnological production. Appl Microbiol Biotechnol 98:6243–6254

    Article  CAS  PubMed  Google Scholar 

  • Noh KH, Oh DK (2009) Production of the rare ginsenosides compound K, compound Y, compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius. Biol Pharma Bull 32:1830–1835

    Article  CAS  Google Scholar 

  • Noh KH, Son JW, Kim HJ, Oh DK (2009) Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 73:316–321

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Shin KC, Oh DK (2014) Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus. Biotechnol Lett 36:113–119

    Article  CAS  PubMed  Google Scholar 

  • Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Engg Biotechnol 113:151–176

    CAS  Google Scholar 

  • Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM, Piñol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  PubMed  Google Scholar 

  • Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH, Kim ND (2009) Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. J Ethnopharmacol 121:304–312

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9–19

    Article  CAS  PubMed  Google Scholar 

  • Park D, Bae DK, Jeon JH, Lee J, Oh N, Yang G, Yang YH, Kim TK, Song J, Lee SH, Song BS (2011) Immunopotentiation and antitumor effects of a ginsenoside Rg 3-fortified red ginseng preparation in mice bearing H460 lung cancer cells. Environ Toxicol Pharmacol 31:397–405

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, So YY, Geun EJ, Myeong SP (2012) Whole cell biotransformation of major ginsenosides using Leuconostocs and Lactobacilli. Food Sci Biotechnol 21:839–844

    Article  CAS  Google Scholar 

  • Park EH, Yum J, Ku KB, Kim HM, Kang YM, Kim JC, Kim JA, Kang YK, Seo SH (2014a) Red ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J Ginseng Res 38:40–46

    Article  CAS  PubMed  Google Scholar 

  • Park MK, Cui CH, Park SC, Park SK, Kim JK, Jung MS, Jung SC, Kim SC, Im WT (2014b) Characterization of recombinant β-glucosidase from Arthrobacter chlorophenolicus and biotransformation of ginsenosides Rb1, Rb2, Rc, and Rd. J Microbiol 52:399–406

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Xie J, Yin R, Zhao L, Ding G, Wang Z, Xiao W (2015) Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20 (S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069 T. J Mol Catal B: Enzy 113:104–109

    Article  CAS  Google Scholar 

  • Phillips DR, Rasbery JM, Bartel B, Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314

    Article  CAS  PubMed  Google Scholar 

  • Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC (2010) Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from kimchi. J Ginseng Res 34:288–295

    Article  CAS  Google Scholar 

  • Quan LH, Jin Y, Wang C, Min JW, Kim YJ, Yang DC (2012a) Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenoside-hydrolyzing β-glycosidase from Microbacterium esteraromaticum. J Ind Microbiol Biotechnol 39:1557–1562

    Article  CAS  PubMed  Google Scholar 

  • Quan LH, Min JW, Jin Y, Wang C, Kim YJ, Yang DC (2012b) Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant β-glucosidase from Microbacterium esteraromaticum. J Agr Food Chem 60:3776–3781

    Article  CAS  Google Scholar 

  • Quan LH, Min JW, Sathiyamoorthy S, Yang DU, Kim YJ, Yang DC (2012c) Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnol Lett 34:913–917

    Article  CAS  PubMed  Google Scholar 

  • Quan LH, Min JW, Yang DU, Kim YJ, Yang DC (2012d) Enzymatic biotransformation of ginsenoside Rb1 to 20 (S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol 94:377–384

    Article  CAS  PubMed  Google Scholar 

  • Quan LH, Kim YJ, Li GH, Choi KT, Yang DC (2013) Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius. World J Microbiol Biotechnol 29:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    Article  CAS  PubMed  Google Scholar 

  • Rahimi S, Kim YJ, Yang DC (2015) Production of ginseng saponins: elicitation strategy and signal transductions. Appl Microbiol Biotechnol 99:6987–6996

    Article  CAS  PubMed  Google Scholar 

  • Rahimi S, Kim YJ, Devi BS, Oh JY, Kim SY, Kwon WS, Yang DC (2016) Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Res Chem Intermed 42:2937–2951

    Article  CAS  Google Scholar 

  • Ruan CC, Zhang H, Zhang LX, Liu Z, Sun GZ, Lei J, Qin YX, Zheng YN, Li X, Pan HY (2009) Biotransformation of ginsenoside Rf to Rh1 by recombinant β-glucosidase. Molecules 14:2043–2048

    Article  CAS  PubMed  Google Scholar 

  • Shin KC, Oh DK (2014) Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. J Biotechnol 172:30–37

    Article  CAS  PubMed  Google Scholar 

  • Shin KC, Oh HJ, Kim BJ, Oh DK (2013) Complete conversion of major protopanaxadiol ginsenosides to compound K by the combined use of α-l-arabinofuranosidase and β-galactosidase from Caldicellulosiruptor saccharolyticus and β-glucosidase from Sulfolobus acidocaldarius. J Biotechnol 167:33–40

    Article  CAS  PubMed  Google Scholar 

  • Shin KC, Seo MJ, Oh DK (2014) Characterization of β-xylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2. Biotechnol Lett 36:2275–2281

    Article  CAS  PubMed  Google Scholar 

  • Shin KC, Choi HY, Seo MJ, Oh DK (2015) Compound K production from red ginseng extract by β-glycosidase from Sulfolobus solfataricus supplemented with α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One 10:0145876

    Google Scholar 

  • Sivakumar G, Yu KW, Paek KY (2005) Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci 5:333–342

    Article  CAS  Google Scholar 

  • Son HM, Yang JE, Kook MC, Shin HS, Park SY, Lee DG, Yi TH (2013) Sphingobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J General Appl Microbiol 59:345–352

    Article  CAS  Google Scholar 

  • Su JH, Xu JH, Yu HL, He YC, Lu WY, Lin GQ (2009) Properties of a novel β-glucosidase from Fusarium proliferatum ECU2042 that converts ginsenoside Rg 3 into Rh 2. J Mol Catal B Enzym 57:278–283

    Article  CAS  Google Scholar 

  • Sun S, Qi LW, Du GJ, Mehendale SR, Wang CZ, Yuan CS (2011) Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng. Food Chem 125:1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metabolism Disposition 31:1065–1071

    Article  PubMed  Google Scholar 

  • Ten LN, Chae SM, Yoo SA (2014a) Transformation of ginsenoside Rc into (20S)-Rg3 by the bacterium Leuconostoc sp. BG78. Chem Nat Compounds 50:562–564

    Article  CAS  Google Scholar 

  • Ten LN, Chae SM, Yoo SA (2014b) Biotransformation of ginsenoside Rd into 20 (S)-Rg3 by bacterium Flavobacterium sp. BGS36. Chem Nat Compounds 50:181–183

    Article  CAS  Google Scholar 

  • Tewari RK, Paek KY (2011) Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. J Plant Growth Regul 30:396–404

    Article  CAS  Google Scholar 

  • Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhancedsynthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biotechnol 67:197–201

    Article  CAS  PubMed  Google Scholar 

  • Thanh NT, Murthy HN, Paek KY (2014) Ginseng cell culture for production of ginsenosides. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Dordrecht

    Google Scholar 

  • Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M (2008) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Diseases 18:46–56

    Article  Google Scholar 

  • Wang W, Zhang ZY, Zhong JJ (2005) Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl Microbiol Biotechnol 67:752–758

    Article  CAS  PubMed  Google Scholar 

  • Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, Aung HH, Xie JT, Tong R, He TC, Yuan CS (2006) Steamed American ginseng berry: ginsenoside analyses and anticancer activities. J Agricult Food Chem 54:9936–9942

    Article  CAS  Google Scholar 

  • Wang CZ, Aung HH, Ni M, Wu JA, Tong R, Wicks S, He TC, Yuan CS (2007) Red Americanginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med 73:669–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Gao WY, Zhang J, Huang T, Wen TT, Huang LQ (2011) Combination effect of lactoalbumin hydrolysate and methyl jasmonate on ginsenoside and polysaccharide production in Panax quinquefolium L. cells cultures. Acta Physiol Plant 33:861–866

    Article  CAS  Google Scholar 

  • Wang J, Gao W, Zuo B, Zhang L, Huang L (2013) Effect of methyl jasmonate on the ginsenoside content of Panax ginseng adventitious root cultures and on the genes involved in triterpene biosynthesis. Res Chem Intermed 39:1973–1980

    Article  CAS  Google Scholar 

  • Wang JR, Yau LF, Zhang R, Xia Y, Ma J, Ho HM, Hu P, Hu M, Liu L, Jiang ZH (2014a) Transformation of ginsenosides from notoginseng by artificial gastric juice can increase cytotoxicity toward cancer cells. J Agricult Food Chem 62:2558–2573

    Article  CAS  Google Scholar 

  • Wang L, Zhao SJ, Cao HJ, Sun Y (2014b) The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast. Funct Integr Genomics 14:545–557

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wei Y, Fan Y, Liu Q, Wei W, Yang C, Zhang L, Zhao G, Yue J, Yan X, Zhou Z (2015a) Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metabolic Engg 29:97–105

    Article  CAS  Google Scholar 

  • Wang WN, Yan BX, Xu WD, Qiu Y, Guo YL, Qiu ZD (2015b) Highly selective bioconversion of ginsenoside Rb1 to compound K by the mycelium of Cordyceps sinensis under optimized conditions. Molecules 20:19291–19309

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Wang P, Wei Y, Liu Q, Yang C, Zhao G, Yue J, Yan X, Zhou Z (2015) Characterization of Panaxginseng UDP-glycosyltransferases catalyzing Protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 8:1412–1424

    Article  CAS  PubMed  Google Scholar 

  • Wolffram S, Blöck M, Ader P (2002) Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J Nutr 132:630–635

    CAS  PubMed  Google Scholar 

  • Wong AS, Che CM, Leung KW (2015) Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 32:256–272

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhong JJ (1999) Production of ginseng and its bioactive components plant cell culture: current technological and applied aspects. J Biotechnol 68:89–99

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Wong K, Ho KP, Zhou LG (2005) Enhancement of saponin production in Panax ginseng cell culture by osmotic stress and nutrient feeding. Enzym Microb Technol 36(1):133–138

  • Wu CH, Popova EV, Hahn EJ, Paek KY (2009) Linoleic and α-linolenic fatty acids affect biomass and secondary metabolite production and nutritive properties of Panax ginseng adventitious roots cultured in bioreactors. Biochem Eng J 47:109–115

    Article  CAS  Google Scholar 

  • Wu L, Jin Y, Yin C, Bai L (2012) Co-transformation of Panax major ginsenosides Rb1 and Rg1 to minor ginsenosides C–K and F1 by Cladosporium cladosporioides. J Industrial Microbiol Biotechnol 39:521–527

    Article  CAS  Google Scholar 

  • Xiang L, Guo X, Niu YY, Chen SL, Luo HM (2012) Full-length cDNA cloning and bioinformatics analysis of PnUGT1 gene in Panax notoginseng. Yao Xue Xue Bao 47:1085–1091

    CAS  PubMed  Google Scholar 

  • Xu X, Hu X, Neill SJ, Fang J, Cai W (2005) Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng CA Meyer. Plant Cell Physiol 46:947–954

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Zhou W, Shi X, Zhou P, Ju D, Feng M (2010) Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces bainier sp. 229. Process Biochem 45:1550–1556

    Article  CAS  Google Scholar 

  • Yan X, Fan Y, Wei W, Wang P, Liu Q, Wei Y, Zhang L, Zhao G, Yue J, Zhou Z (2014) Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res 24:770–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo MH, Yeom SJ, Park CS, Lee KW, Oh DK (2011) Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus. Appl Microbiol Biotechnol 89:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Yu KW, Gao WY, Son SH, Paek KY (2000) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng. In Vitro Cell Develop Biol-Plant 36:424–428

    Article  CAS  Google Scholar 

  • Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng CA Meyer. Biochem Eng J 11:211–215

    Article  CAS  Google Scholar 

  • Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53–56

    Article  CAS  Google Scholar 

  • Yue CJ, Zhong JJ (2005) Purification and characterization of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem 40:3742–3748

    Article  CAS  Google Scholar 

  • Yue CJ, Zhong JJ (2008) Manipulation of ginsenoside heterogeneity of Panax notoginseng cells in flask and bioreactor cultivations with addition of phenobarbital. Bioprocess Biosyst Eng 3:95–100

    Article  CAS  Google Scholar 

  • Yun TK, Lee YS, Lee YH, Yun HY (2001) Cancer chemopreventive compounds of red ginseng produced from Panax ginseng CA Meyer. J Ginseng Res 25:107–111

    CAS  Google Scholar 

  • Zhang ZY, Zhong JJ (2004) Scale up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysachcharide by high density cultivation of Panax notoginseng cells. Biotechnol Prog 20:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Zhong JJ, Yu JT (1996a) Effect of nitrogen source on cell growth and production of ginseng saponin and polysachcharide in suspension cells of Panax notoginseng. Biotechnol Prog 12:567–571

    Article  CAS  Google Scholar 

  • Zhang YH, Zhong JJ, Yu JT (1996b) Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. J Biotechnol 51:49–56

    Article  CAS  Google Scholar 

  • Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J (2014) Both the mevalonate and the non mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33:393–400

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Bai P, Liu T, Li D, Zhang X, Lu W, Yuan Y (2016) Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol Bioeng 113:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Zhong JJ, Wang SJ (1998) Effects of nitrogen source on the production of ginseng saponin and polysachcharide in cell cultures of Panax quinquefolium. Process Biochem 33:671–675

    Article  CAS  Google Scholar 

  • Zhong JJ, Zhang ZY (2005) High density cultivation of Panax notoginseng cell cultures with methyl jasmonate elicitation in a centrifugal impeller bioreactor. Engg Life Sci 5(5):471–474

    Article  CAS  Google Scholar 

  • Zhong JJ, Zhu QX (1995) Effect of initial phosphate concentration on cell growth and ginsenoside saponin production by suspended cultures of Panax notoginseng. Appl Biochem Biotechnol 55:241–247

    Article  CAS  Google Scholar 

  • Zhou W, Yan Q, Li JY, Zhang XC, Zhou P (2008) Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229. J Appl Microbiol 104:699–706

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-CIMAP, India, for the infrastructure and the lab facilities provided for the studies. TB also acknowledges the award of a Senior Research Fellowship (SRF) granted by the University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mathur.

Ethics declarations

Conflict of interest

Tanya Biswas declares that she has no conflict of interest.

Ajay Kumar Mathur declares that he has no conflict of interest.

Archana Mathur declares that she has no conflict of interest.

Ethical compliance

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, T., Mathur, A.K. & Mathur, A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 101, 4009–4032 (2017). https://doi.org/10.1007/s00253-017-8279-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8279-4

Keywords

Navigation