Skip to main content
Log in

Co-transformation of Panax major ginsenosides Rb1 and Rg1 to minor ginsenosides C–K and F1 by Cladosporium cladosporioides

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Rb1 and Rg1 are the major ginsenosides in protopanaxadiol and protopanaxatriol. Their content in ginsenosides was 23.8 and 17.6%, respectively. A total of 22 isolates of β-glucosidase producing microorganisms were isolated from the soil of a ginseng field using Esculin-R2A agar. Among these isolates, the strain GH21 showed the strongest activities to convert ginsenoside Rb1 and Rg1 to minor ginsenosides compound-K and F1, respectively. Ginsenosides Rb1 and Rg1 bioconversion rates were 74.2 and 89.3%, respectively. Meanwhile, the results demonstrated that the ginsenoside Rg1 could change the biotransformation pathway of ginsenoside Rb1 by inhibiting the formation of the intermediate metabolite gypenoside-XVII. GH21 was identified as a Cladosporium cladosporioides species based on the internal transcribed spacers (ITS) ITS1-5.8S-ITS2 rRNA gene sequences constructed phylogenetic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 77:1345–1350

    Article  PubMed  CAS  Google Scholar 

  2. Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC (2006) Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 28:1121–1127

    Article  PubMed  CAS  Google Scholar 

  3. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC (2007) Microbial conversion of minor ginsenoside F2 and gypenoside XVII by intrasporangium sp.GS603 isolated from soil. J Microbiol Biotechnol 17:1937–1943

    PubMed  CAS  Google Scholar 

  4. Chi H, Kim DH, Ji GE (2005) Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol Pharm Bull 28:2102–2105

    Article  PubMed  CAS  Google Scholar 

  5. Chi H, Ji GE (2005) Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27:765–771

    Article  PubMed  CAS  Google Scholar 

  6. Choi K, Kim M, Ryu J, Choi C (2007) Ginsenosides compound K and Rh2 inhibit tumor necrosis factor-α-induced activation of the NF-kB and JNK pathways in human astroglial cells. Neurosci Lett 421:37–41

    Article  PubMed  CAS  Google Scholar 

  7. Dong A, Ye M, Guo H, Zheng J, Guo D (2003) Microtransformation of ginsenoside Rb1 by Rhizopus stolon and Curvularia lunata. Biotechnol Lett 25:339–344

    Article  PubMed  CAS  Google Scholar 

  8. Dong AL, Cui YJ, Guo H, Zheng JH, Guo D (2001) Microbiological transformation of ginsenoside Rg1. J Chin Pharm Sci 10:115–118

    CAS  Google Scholar 

  9. Han Y, Sun BS, Hu XM, Zhang H, Jiang BH, Spranger MI, Zhao YQ (2007) Transformation of bioactive compounds by Fusariun sacchari fungus isolated from the soil-cultivated Ginseng. J Agric Food Chem 55:9373–9379

    Article  PubMed  CAS  Google Scholar 

  10. Hasegawa H (2004) Proof of the mysterious efficacy of ginseng: Basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 95:153–157

    Article  PubMed  CAS  Google Scholar 

  11. Kim MK, Lee JW, Lee KY, Yang DC (2005) Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 43:456–462

    PubMed  CAS  Google Scholar 

  12. Lee BH, You HJ, Park MS, Kwin B, Ji GE (2006) Transformation of the glycosides from food materials by probiotics and food microorganisms. J Microbiol Biotechnol 16:497–504

    CAS  Google Scholar 

  13. Lee EH, Cho SY, Kim SJ, Shin ES, Chang HK et al (2003) Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2. J Invest Dermatol 121:607–613

    Article  PubMed  CAS  Google Scholar 

  14. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH (2005) Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int 25:1069–1073

    Article  PubMed  CAS  Google Scholar 

  15. Lee SJ, Sung JH, Lee BH (1999) Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett 144:39–43

    Article  PubMed  CAS  Google Scholar 

  16. Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M (1997) Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 28:191–200

    Article  PubMed  CAS  Google Scholar 

  17. Odani T, Tanizawa H, Takino Y (1983) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins, the absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem Pharm Bull 31:1059–1066

    Article  PubMed  CAS  Google Scholar 

  18. Park JH (2004) Sun a new processed ginseng with fortified activity. Food Ind Nutr 9:23–27

    Google Scholar 

  19. Son JW, Kim HJ, Oh DK (2008) Ginsenoside Rd production from the major ginsenoside Rb1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 30:713–716

    Article  PubMed  CAS  Google Scholar 

  20. Wang XY, Zhang JT (2003) Effect of ginsenoside Rb1 on long-term potentiation in the dentate gyrus of anaesthetized rats. J Asian Nat Prod Res 5:1–4

    Article  PubMed  Google Scholar 

  21. Yoo DS, Rho HS, Lee YG, Yeom MH et al (2011) Ginsenoside F1 modulates cellular responses of skin melanoma cells. J Ginseng Res 35:86–91

    Article  CAS  Google Scholar 

  22. Zhang JT, Liu Y, Qu ZW (1988) Influence of ginsenoside Rb1 and Rg1 on some central neurotransmitter receptors and protein biosynthesis in the mouse brain. Acta Pharm Sin 23:12–16

    CAS  Google Scholar 

  23. Zhang DS, Zhang JT (2000) Effects of total ginsenoside on learning and memory impairment induced by transient betaamyloid peptide. Chin Pharm Bull 16:422–425

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.20862017) and National Ginseng Products Quality Supervision Inspection Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengri Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Jin, Y., Yin, C. et al. Co-transformation of Panax major ginsenosides Rb1 and Rg1 to minor ginsenosides C–K and F1 by Cladosporium cladosporioides . J Ind Microbiol Biotechnol 39, 521–527 (2012). https://doi.org/10.1007/s10295-011-1058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1058-9

Keywords

Navigation