Skip to main content

Advertisement

Log in

Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Dammarenediol-II is biologically active tetracyclic triterpenoid, which is basic compound of ginsenoside saponin. Here, we established the dammarenediol-II production via a cell suspension culture of transgenic tobacco overexpressing PgDDS.

Abstract

Dammarenediol-II synthase catalyzes the cyclization of 2,3-oxidosqualene to dammarenediol-II, which is the basic triterpene skeleton in dammarene-type saponin (ginsenosides) in Panax ginseng. Dammarenediol-II is a useful candidate both for pharmacologically active triterpenes and as a defense compound in plants. Dammarenediol-II is present in the roots of P. ginseng in trace amounts because it is an intermediate product in triterpene biosynthesis. In this work, we established the production of dammarenediol-II via cell suspension culture of transgenic tobacco. The dammarenediol-II synthase gene (PgDDS) isolated from P. ginseng was introduced into the Nicotiana tobacum genome under the control of 35S promoter by Agrobacterium-mediated transformation. Accumulation of dammarenediol-II in transgenic tobacco plants occurred in an organ-specific manner (roots > stems > leaves > flower buds), and transgenic line 14 (T14) exhibited a high amount (157.8 μg g−1 DW) of dammarenediol-II in the roots. Dammarenediol-II production in transgenic tobacco plants resulted in reduced phytosterol (β-sitosterol, campesterol, and stigmasterol) contents. A cell suspension culture was established as a shake flask culture of a callus derived from root segments of transgenic (T14) plants. The amount of dammarenediol-II production in the cell suspension reached 573 μg g−1 dry weight after 3 weeks of culture, which is equivalent to a culture volume of 5.2 mg dammarenediol-II per liter. Conclusively, the production of dammarenediol-II in a cell suspension culture of transgenic tobacco can be applied to the large-scale production of this compound and utilized as a source of pharmacologically active medicinal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HPT:

Hygromycin phosphotransferase

DDS:

Dammarenediol-II synthase

PgDDS:

Panax ginseng dammarenediol-II synthase

BA:

6-Benzylaminopurine

MS:

Murashige and Skoog

MeJA:

Methyl jasmonate

PCR:

Polymerase chain reaction

References

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akihisa T, Tokuda H, Ukiya M, Suzuki T, Enjo F, Koike K, Nikaido T, Nishino H (2004) 3-epicabraleahydroxylactone and other triterpenoids from Camellia oil and their inhibitory effects on Epstein–Barr virus activation. Chem Pharm Bull 52:153–156

    Article  CAS  PubMed  Google Scholar 

  • Bae EA, Han MJ, Kim EJ, Kim DH (2004) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 27:61–67

    Article  CAS  PubMed  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566

    Article  CAS  PubMed  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Kim HJ, Kwon YS, Choi YE (2011) The cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53:1535–1545

    Article  CAS  PubMed  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  • Hasegawa H, Sung JH, Benno Y (1997) Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 63:436–440

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Chen Z, Xie Y (1996) New triterpenoid saponins from Gynostemma pentaphyllum. J Nat Prod 59:1143–1145

    Article  CAS  PubMed  Google Scholar 

  • Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42:97–108

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Yan H, Bu X, Liu G, Zhao Y (2004) Aglycone protopanaxadiol, a ginseng saponin, inhibits P-glycoprotein and sensitizes chemotherapy drugs on multidrug resistant cancer cells. ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 22(Suppl):9663

    Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tiss Org Cult 98:25–33

    Article  CAS  Google Scholar 

  • Kim YS, Cho JH, Park S, Han JY, Back K, Choi YE (2011) Gene regulation patterns in triterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum. Planta 233:343–355

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Han JY, Kim HJ, Kim YS, Huh GH, Choi YE (2012) Dammarenediol-II production confers TMV tolerance in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase. Plant Cell Physiol 53:173–182

    Article  CAS  PubMed  Google Scholar 

  • Liang YL, Zhao SJ, Xu LX, Zhang XY (2012) Heterologous expression of dammarenediol synthase gene in an engineered Saccharomyces cerevisiae. Lett Appl Microbiol 55:323–329

    Article  CAS  Google Scholar 

  • Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  CAS  PubMed  Google Scholar 

  • Poehland BL, Carte BK, Francis TA, Hyland LJ, Allaudeen HS (1987) In vitro antiviral activity of dammar resin triterpenoids. J Nat Prod 50:706–713

    Article  CAS  PubMed  Google Scholar 

  • Popovich DG, Kitts DD (2004) Ginsenosides 20(S)-protopanaxadiol and Rh2 reduce cell proliferation and increase sub-G1 cells in two cultured intestinal cell lines (Int-407 and Caco-2). Can J Physiol Pharmacol 82:183–190

    Article  CAS  PubMed  Google Scholar 

  • Quartacci MF, Glisic O, Stevanovic B, Navari-Izzo F (2002) Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration. J Exp Bot 53:2159–2166

    Article  CAS  PubMed  Google Scholar 

  • Scalarone D, Duursma MC, Boon JJ, Chiantoire O (2005) MALDI-TOF mass spectrometry on cellulosic surfaces of fresh and photo-aged di- and triterpenoid varnish resins. J Mass Spec 40:1527–1535

    Article  CAS  Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16:S28–S37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spencer GF (1981) Dammarenediol-II II esters from Cacalia atriplicifolia L. seed oil. J Nat Prod 44:166–168

    Article  CAS  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotech 13:181–187

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotech 19:145–152

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhong JJ (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 19:89–99

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Rural Development Administration, Republic of Korea [Next-Generation BioGreen 21 Program (PJ009529)], and Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Eui Choi.

Additional information

Communicated by H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JY., Wang, HY. & Choi, YE. Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33, 225–233 (2014). https://doi.org/10.1007/s00299-013-1523-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1523-1

Keywords

Navigation