Skip to main content
Log in

Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effects of methyl jasmonate (MJ) and sodium nitroprusside (SNP) on ginsenoside production were investigated in ginseng adventitious roots. The role of nitric oxide (NO) production and reactive oxygen species (ROS) was also elucidated. Different concentrations of SNP were applied to ginseng adventitious roots. The highest accumulation of ginsenoside was recorded for 200 μM of SNP. Ginsenoside biosynthesis-related genes were highly induced by 100 μM MJ in combination with 200 μM of SNP compared to MJ alone , which subsequently led to higher ginsenoside accumulation after 72 h. For the first time, a full length NO-associated (NOA) cDNA clone was isolated and characterized from the embryogenic callus of ginseng with predicted localization in the mitochondria. The open reading frame was 1626 bp with a deduced amino acid sequence of 541 residues, which shared a high degree of homology with the NO associated protein from Solanum tuberosum. PgNOA showed higher transcript levels in treated roots with combined MJ and SNP compared to MJ alone. Increased production of NO was observed after addition of SNP to MJ-treated samples. There was no difference in transcript levels for lipoxygenase, a key enzyme in the jasmonic acid pathway in MJ- and SNP-treated roots compared to roots treated with MJ alone. The superoxide dismutase 1 (SOD1) gene was highly responsive to MJ and SNP treatment compared to treatment with MJ alone. SOD1 catalyzes the dismutation of toxic superoxide radicals into either molecular oxygen or hydrogen peroxide (H2O2) resulting in higher production of these products. H2O2 can be subsequently converted to water by the action of ascorbate peroxidase (APX), which was highly expressed in combined treatment with MJ and SNP compared to treatment with MJ alone. The results obtained here suggest that SNP enhanced the elicitation power of MJ for increased ginsenoside accumulation. Moreover, this process was mediated by a complex signal transduction network including NO biosynthesis and ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.C. Roberts, M.L. Shuler, Curr. Opin. Biotechnol. 8, 154 (1997)

    Article  CAS  Google Scholar 

  2. L.A. Del Río, F.J. Corpas, J.B. Barroso, Phytochemistry 65, 783 (2004)

    Article  Google Scholar 

  3. X. Hu, S. Neill, W. Cai, Funct. Plant Biol. 30, 901 (2003)

    Article  CAS  Google Scholar 

  4. M.J. Xu, J.F. Dong, M.Y. Zhu, Plant Physiol. 139, 991 (2005)

    Article  CAS  Google Scholar 

  5. M. Xu, J. Dong, M. Zhu, Sci. China, Ser. C Life Sci. 49, 379 (2006)

    Article  CAS  Google Scholar 

  6. M. Xu, J. Dong, Appl. Microbiol. Biotechnol. 67, 40 (2005)

    Article  CAS  Google Scholar 

  7. L.P. Zheng, Y.T. Guo, J.W. Wang, R.X. Tan, J. Integr. Plant Biol. 50, 49 (2008)

    Article  CAS  Google Scholar 

  8. W. Wang, Z.J. Zhao, Y.F. Xu, X.H. Qian, J.J. Zhong, Appl. Microbiol. Biotechnol. 70, 298 (2006)

    Article  CAS  Google Scholar 

  9. S. Sathiyamoorthy, J.G. In, G. Sathiyaraj, Y.J. Kim, D.C. Yang, Mol. Biol. Rep. 46, 932–939 (2009)

    Google Scholar 

  10. K.J. Livak, T.D. Schmittgen, Methods 25, 402 (2001)

    Article  CAS  Google Scholar 

  11. Y.J. Kim, O.R. Lee, J.Y. Oh, M.G. Jang, D.C. Yang, Plant Physiol. 165, 373 (2014)

    Article  CAS  Google Scholar 

  12. Y.S. Kim, E.J. Hahn, H.N. Murthy, K.Y. Paek, Biotechnol. Lett. 26, 1619–1622 (2004)

    Article  CAS  Google Scholar 

  13. O.T. Kim, K.H. Bang, Y.C. Kim, D.Y. Hyun, M.Y. Kim, S.W. Cha, Plant Cell, Tissue Organ Cult. 98, 25–33 (2009)

    Article  CAS  Google Scholar 

  14. F.X. Hu, J.J. Zhoong, J. Biosci. Bioeng. 104, 513 (2007)

    Article  CAS  Google Scholar 

  15. Y.S. Kim, E.J. Hahn, H.N. Murthy, K.Y. Pack, Biotechnol. Lett. 26, 1619 (2004)

    Article  CAS  Google Scholar 

  16. R.K. Tewari, S.Y. Lee, E.J. Hahn, K.Y. Paek, Plant Biotechnol. Rep. 1, 227 (2007)

    Article  Google Scholar 

  17. T. Kushiro, Y. Ohno, Y. Shibuya, Y. Ebizuka, Biol. Pharm. Bull. 20, 292 (1997)

    Article  CAS  Google Scholar 

  18. F.X. Hu, J.J. Zhoong, Process Biochem. 43, 113 (2008)

    Article  CAS  Google Scholar 

  19. D.W. Choi, J.D. Jung, Y.I. Ha, H.W. Park, D.S. In, H.J. Chung, J.R. Liu. Plant Cell Rep. 23, 557 (2005)

    Article  CAS  Google Scholar 

  20. O. Emanuelson, H. Nielsen, S. Brunak, G. von Heijne, J. Mol. Biol. 300, 1005 (2000)

    Article  Google Scholar 

  21. A. Kessler, I.T. Baldwin, Annu. Rev. Plant Biol. 53, 299 (2002)

    Article  CAS  Google Scholar 

  22. H. Gundlach, M.J. Muller, T.M. Kutchan, M.H. Zenk, Proc. Natl. Acad. Sci. USA 89, 2389 (1992)

    Article  CAS  Google Scholar 

  23. J. Zhao, L.C. Davis, R. Verpoorte, Biotechnol. Adv. 23, 283 (2005)

    Article  CAS  Google Scholar 

  24. S. Rahimi, B.S.R. Devi, A. Khorolragchaa, Y.J. Kim, J.H. Kim, S.K. Jung, D.C. Yang, Russ. J. Plant Physiol. 61, 811 (2014)

    Article  CAS  Google Scholar 

  25. G.P. Bolwell, P. Wojtaszek, Physiol. Mol. Plant Pathol. 51, 347 (1997)

    Article  CAS  Google Scholar 

  26. J. Zhao, Q. Hu, Y.Q. Guo, W.H. Zhu, Plant Sci. 161, 423 (2001)

    Article  CAS  Google Scholar 

  27. A. Smykowski, P. Zimmermann, U. Zentgraf, Plant Physiol. 153, 1321 (2010)

    Article  CAS  Google Scholar 

  28. R.K. Tewari, K.Y. Paek, J. Plant Growth Regul. 30, 396 (2011)

    Article  CAS  Google Scholar 

  29. D. Clark, J. Durner, D.A. Navarre, D.F. Klessig, Mol. Plant Microbe Interac. 13, 1380 (2000)

    Article  CAS  Google Scholar 

  30. G. Sathiyaraj, O.R. Lee, S. Parvin, A. Khorolragchaa, Y.J. Kim, D.C. Yang, Mol. Biol. Rep. 38, 2761 (2011)

    Article  CAS  Google Scholar 

  31. J.Y. Han, Y.S. Kwon, D.C. Yang, Y.R. Jung, Y.E. Choi, Plant Cell Physiol. 47, 1653 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) by the Ministry of Education (2013R1A1A2064430), Republic of Korea (YJ Kim) and iPET (312064-03-1-HD040), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea (DC Yang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Jin Kim or Deok-Chun Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, S., Kim, YJ., Devi, B.S.R. et al. Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Res Chem Intermed 42, 2937–2951 (2016). https://doi.org/10.1007/s11164-015-2188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2188-x

Keywords

Navigation