Skip to main content
Log in

Salicylic Acid-induced Nitric Oxide and ROS Generation Stimulate Ginsenoside Accumulation in Panax ginseng Roots

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We evaluated the involvement of nitric oxide (NO) in salicylic acid (SA)-induced accumulation of ginsenoside in adventitious roots of Panax ginseng and its mediation by reactive oxygen species (ROS). Related effects of SA on components of the antioxidant system were also sought. Adventitious roots of P. ginseng were grown in suspension culture for 3 weeks in MS medium and treated over 5 days with SA (100 μM) alone, SA in combination with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), or PTIO alone. Nitric oxide, the superoxide anion (O ·−2 ), H2O2, nitrite, nonprotein thiol, and ascorbate were monitored together with ginsenoside, NADPH oxidase activity, and several antioxidant enzymes. Salicylic acid did not inhibit root growth but induced accumulation of ginsenoside, lipid peroxidation, and generation of NO and O ·−2 . It also enhanced activities of NADPH oxidase, superoxide dismutase, catalase, and peroxidase, including ascorbate peroxidase. These effects were suppressed by PTIO. Salicylic acid also decreased glutathione reductase activity. Inclusion of PTIO with SA decreased the activity of glutathione reductase further. Treatment with SA plus PTIO also decreased nonprotein thiol and ascorbate contents but caused nitrite to overaccumulate. Salicylic acid applied to adventitious roots in culture induced accumulation of ginsenoside in an NO-dependent manner that was mediated by the associated increases in O ·−2 , which gave other antioxidant responses that were dependent on NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Able AJ, Guest DI, Sutherland MW (1998) Use of a new tetrazolium based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var. nicotianae. Plant Physiol 117:491–499

    Article  PubMed  CAS  Google Scholar 

  • Ali MB, Yu KW, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture of Panax ginseng roots in bioreactor. Plant Cell Rep 25:613–620

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assays applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bisht SS, Sharma A, Chaturvedi K (1989) Certain metabolic lesions of chromium toxicity in radish. Indian J Agric Biochem 2:109–115

    CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol 59:411–416

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Fuquay T, Yoshikawa T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium photogenes. Plant Cell Rep 6:449–453

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198

    Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signalling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Jablonski PP, Anderson JW (1978) Light-dependent reduction of oxidised glutathione by ruptured chloroplasts. Plant Physiol 61:221–225

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800–4805

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730

    CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  PubMed  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M (2009a) Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers. Free Radic Biol Med 46:1686–1693

    Article  PubMed  Google Scholar 

  • Kováčik J, Grúz J, Bačkor M, Strnad M, Repčák M (2009b) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    Article  PubMed  Google Scholar 

  • Kováčik J, Grúz JG, Hedbavny J, Klejdus B, Strnad M (2009c) Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem 57:9848–9855

    Article  PubMed  Google Scholar 

  • Kováčik J, Grúz J, Klejdus B, Stork F, Marchiosi R, Ferrarese-Filho O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389

    Article  Google Scholar 

  • Kumar P, Tewari RK, Sharma PN (2010) Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants doi:10.1093/aobpla/plq002. Available at http://aobpla.oxfordjournals.org/content/2010/plq002.abstract. Accessed 15 Feb 2010

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    PubMed  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Pál M, Horváthe E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol Plant 125:356–364

    Article  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms. The role of salicylic acid. Plant J 16:603–614

    Article  Google Scholar 

  • Rhoads DM, McIntosh L (1992) Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K, Kobayashi K, Fujihara S (2008) Adaptive mechanism of Echinochloa crus-galli Beauv. var. formosensis Ohwi under salt stress: effect of salicylic acid on salt sensitivity. Plant Sci 174:583–589

    Article  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn T, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  Google Scholar 

  • Tewari RK, Lee SY, Hahn EJ, Paek KY (2007) Temporal changes in the growth, saponin content, and antioxidant defense in the adventitious roots of Panax ginseng subjected to nitric oxide elicitation. Plant Biotechnol Rep 1:227–235

    Article  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep 27:563–573

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Kim S, Hahn EJ, Paek KY (2009) Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. Plant Cell Rep 28:267–279

    Article  PubMed  CAS  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  PubMed  CAS  Google Scholar 

  • William A, John G, Hendel J (1996) Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 775:11–17

    Google Scholar 

  • Wu CH, Tewari RK, Hahn EJ, Paek KY (2007) Nitric oxide elicitation induces accumulation of secondary metabolites and antioxidant defence in the adventitious roots of Echinacea purpurea. J Plant Biol 50:636–643

    Article  CAS  Google Scholar 

  • Yu KW, Gao WY, Son SH, Paek KY (2000) Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C.A. Meyer). In Vitro Cell Dev Biol Plants 36:424–428

    Article  CAS  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zottini M, Costa A, Michele RD, Ruzzene M, Carimi F, Schiavo FL (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Human Resource Development (MOE), and a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Yoeup Paek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, R.K., Paek, KY. Salicylic Acid-induced Nitric Oxide and ROS Generation Stimulate Ginsenoside Accumulation in Panax ginseng Roots. J Plant Growth Regul 30, 396–404 (2011). https://doi.org/10.1007/s00344-011-9202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9202-3

Keywords

Navigation