Skip to main content
Log in

Characterization of β-xylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

β-Xylosidase from Thermoanaerobacterium thermosaccharolyticum was purified by His-trap affinity chromatography giving a specific activity of 5.15 U mg−1. From gel-filtration chromatography, the purified enzyme was a tetramer with a total molecular mass of 245 kDa. Maximal enzyme activity using o-nitrophenyl(NP)-β-d-xylopyranoside was at pH 6.5 and 60 °C, with a half-life of 50 h. The enzyme had highest activity for oNP-β-d-xylopyranoside among aryl-glycosides, and was only active for notoginsenosides R1 and R2 amongst various ginsenosides. β-Xylosidase completely converted 2 g notoginsenosides R1 and R2 l−1 to 1.69 g ginsenoside Rg1 l−1 and 1.63 g ginsenoside Rh1 l−1 in 4 and 18 h, respectively, with molar conversion yields of 100 % and specific productivities of 0.21 and 0.05 g g-enzyme−1 h−1, respectively. To our knowledge, this is the first report on the enzymatic production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH (2004) Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:2257–2266

    Article  PubMed  CAS  Google Scholar 

  • Correa JM, Graciano L, Abrahao J, Loth EA, Gandra RF, Kadowaki MK, Henn C, Simao Rde C (2012) Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl Biochem Biotechnol 168:2218–2229

    Article  PubMed  CAS  Google Scholar 

  • Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, Shoham Y (2005) Enzyme-substrate complex structures of a GH39 β-xylosidase from Geobacillus stearothermophilus. J Mol Biol 353:838–846

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Xue J, Lee M, Yu J, Sung C (2014) Long-term administration of ginsenoside Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int J Mol Med 33:234–240

    PubMed  CAS  Google Scholar 

  • Jung JS, Shin JA, Park EM, Lee JE, Kang YS, Min SW, Kim DH, Hyun JW, Shin CY, Kim HS (2010) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 115:1668–1680

    Article  PubMed  CAS  Google Scholar 

  • Lee YE, Zeikus JG (1993) Genetic organization, sequence and biochemical characterization of recombinant β-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. J Gen Microbiol 139(Pt 6):1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW, Park JH (2009) Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd. Pharmazie 64:242–247

    PubMed  CAS  Google Scholar 

  • Luthi E, Love DR, McAnulty J, Wallace C, Caughey PA, Saul D, Bergquist PL (1990) Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile “Caldocellum saccharolyticum”. Appl Environ Microbiol 56:1017–1024

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oh HA, Seo JY, Jeong HJ, Kim HM (2013) Ginsenoside Rg1 inhibits the TSLP production in allergic rhinitis mice. Immunopharmacol Immunotoxicol 35:678–686

    Article  PubMed  CAS  Google Scholar 

  • Park EK, Choo MK, Han MJ, Kim DH (2004) Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol 133:113–120

    Article  PubMed  CAS  Google Scholar 

  • Shin YM, Jung HJ, Choi WY, Lim CJ (2013) Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines. Mol Biol Rep 40:269–279

    Article  PubMed  CAS  Google Scholar 

  • Smaali I, Remond C, O’Donohue MJ (2006) Expression in Escherichia coli and characterization of β-xylosidases GH39 and GH-43 from Bacillus halodurans C-125. Appl Microbiol Biotechnol 73:582–590

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Zhao F, Zhang L, Du Y, Wang T, Fu F (2013) Ginsenoside Rg1 exerts synergistic anti-inflammatory effects with low doses of glucocorticoids in vitro. Fitoterapia 91:173–179

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Zhou F, Li N, Dong Q, Zhang X, Ye X, Guo J, Chen B, Yu Z (2013) Anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection in rat. Biol Pharm Bull 36:1634–1639

    Article  PubMed  CAS  Google Scholar 

  • Wang YZ, Chen J, Chu SF, Wang YS, Wang XY, Chen NH, Zhang JT (2009) Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1’s metabolites ginsenoside Rh1 and protopanaxatriol. J Pharmacol Sci 109:504–510

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Yoon HJ, Ahn HJ, Lee BI, Pedelacq JD, Liong EC, Berendzen J, Laivenieks M, Vieille C, Zeikus GJ, Vocadlo DJ, Withers SG, Suh SW (2004) Crystal structure of β-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J Mol Biol 335:155–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Research Laboratory program (No. 2013-A423-0061), the National Research Foundation, the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, KC., Seo, MJ. & Oh, DK. Characterization of β-xylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2 . Biotechnol Lett 36, 2275–2281 (2014). https://doi.org/10.1007/s10529-014-1604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1604-4

Keywords

Navigation