Skip to main content

Can Bacillus Species Enhance Nutrient Availability in Agricultural Soils?

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology

Abstract

One major challenge for the twenty-first century will be the production of sufficient food for the global human population. The negative impacts on soil–plant–microbes–environmental sustainability due to injudicious use of chemical fertilizer, pesticide, insecticide, etc. by the unaware farmers deteriorate soil and environment quality. One possible way to use efficient soil microorganisms to remediate nutrient deficiency in agricultural soils and other plant growth-promoting (PGP) activities that can be of help for plant growth and development. The Bacillus species is one the most dominant rhizospheric bacterial/rhizobacteria species like Bacillus subtilis, B. cereus, B. thuringiensis, B. pumilus, B. megaterium, etc. that can help enhance the plant growth and development by different mechanisms, which PGPR can inhibit phytopathogens is the production of hydrogen cyanide (HCN) and/or fungal cell wall degrading enzymes, e.g., chitinase and ß-1,3-glucanase. Direct plant growth promotion includes symbiotic and non-symbiotic PGPR which function through production of plant hormones such as auxins, cytokinins, gibberellins, ethylene, and abscisic acid. Mitigate the challenge by adopting eco-friendly crop production practices. Some Bacillus species function as a sink for 1-aminocyclopropane-1-carboxylate (ACC), the immediate precursor of ethylene in higher plants, by hydrolyzing it into α-ketobutyrate and ammonia and in this way promote root growth by lowering indigenous ethylene levels in the micro-rhizo environment. Bacillus species also help in solubilization of mineral phosphates, potassium, zinc, and other nutrients; rhizobacteria retain more soil organic N and other nutrients in the soil–plant system, thus reducing the need for fertilizers and enhancing release of the nutrients from indigenous or mineral sources, enhancing the economic and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, M. K., Sharif, S., Kazmi, M., Sultan, T., & Aslam, M. (2011). Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystems, 145, 159–168.

    Article  Google Scholar 

  • Abdullah, A. T., Hanafy, M. S., EL-Ghawwas, E. O., & Ali, Z. H. (2012). Effect of compost and some biofertilizers on growth, yield, essential oil, productivity and chemical composition of Rosmarinus officinalis, L. plants. Journal of Horticultural Science & Ornamental Plants, 4(2), 201–214.

    CAS  Google Scholar 

  • Abou-Shanab, R. A., Ghanem, K., Ghanem, N., & Al-Kolaibe, A. (2008). The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World Journal of Microbiology and Biotechnology, 24, 253–262.

    Article  CAS  Google Scholar 

  • Ahmad, F., Ahmad, I., & Khan, M. S. (2006). Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 36, 1–9.

    Google Scholar 

  • Ahmad, M., Nadeem, S. M., Naveed, M., & Zahir, Z. A. (2016). Potassium-solubilizing bacteria and their application in agriculture. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 293–313). New Delhi: Springer.

    Google Scholar 

  • Alagawadi, A. R., & Gaur, A. C. (1992). Inoculation of Azospirillum brasilense and phosphate solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land. Tropical Agriculture, 69, 347–350.

    Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Archana, D. S., Nandish, M. S., Savalagi, V. P., & Alagawadi, A. R. (2012). Screening of K-solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet, 9(4), 627–630.

    Google Scholar 

  • Archana, D. S., Nandish, M. S., Savalagi, V. P., & Alagawadi, A. R. (2013). Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet, 10, 248–257.

    Google Scholar 

  • Awasthi, R., Tewari, R., & Nayyar, H. (2011). Synergy between plants and P-solubilizing microbes in soils: Effects on growth and physiology of crops. International Research Journal of Microbiology, 2, 484–503.

    Google Scholar 

  • Bacon, C. W., & Hinton, D. M. (2001). Control of seedling blight in wheat by Bacillus mojavensis. Phytopathology, 91(suppl), S4.

    Google Scholar 

  • Bacon, C. W., Yates, I. E., Hinton, D. M., & Meredith, F. (2001). Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives, 109, 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri, D. V., Loyola-Vargas, V. M., Broeckling, C. D., De-la-Pena, C., Jasinski, M., Santelia, D., Martinoia, E., Sumner, L. W., Banta, L. M., Stermitz, F., & Vivanco, J. M. (2008). Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiology, 146, 762–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahadur, I., Maurya, B. R., Kumar, A., Meena, V. S., & Raghuwanshi, R. (2016a). Towards the soil sustainability and potassium-solubilizing microorganisms. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 225–266). New Delhi: Springer.

    Google Scholar 

  • Bahadur, I., Maurya, B. R., Meena, V. S., Saha, M., Kumar, A., & Aeron, A. (2016b). Minerals release dynamics of tri-calcium phosphate (TCP) and waste muscovite (WM) by mineral solubilizing rhizobacteria (MSR) isolated from Indo-Gangetic Plain (IGP) of India. Geomicrobiology Journal. doi:10.1080/01490451.2016.1219431.

    Google Scholar 

  • Bais, H. P., Walker, T. S., Schweizer, H. P., & Vivanco, J. M. (2002). Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiology and Biochemistry, 40, 983–995.

    Article  CAS  Google Scholar 

  • Bapiri, A., Asgharzadeh, A., Mujallali, H., Khavazi, K., & Pazira, E. (2012). Evaluation of zinc solubilization potential by different strains of Fluorescent Pseudomonads. Journal of Applied Sciences and Environmental Management, 16(3), 295–298.

    CAS  Google Scholar 

  • Bartelt-Ryser, J., Joshi, J., Schmid, B., Brandl, H., & Balser, T. (2005). Soil feedbacks of plant-diversity on soil microbial communities and subsequent plant growth. Perspectives in Plant Ecology, 7, 27–49.

    Article  Google Scholar 

  • Basak, B. B., & Biswas, D. R. (2009). Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil, 317, 235–255.

    Article  CAS  Google Scholar 

  • Basak, B. B., & Biswas, D. R. (2010). Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biology and Fertility of Soils, 46, 641–648.

    Article  Google Scholar 

  • Basak, B. B., & Biswas, D. R. (2012). Modification of waste mica for alternative source of potassium: Evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). Lambert Academic Publishing. ISBN: 978-3-659-29842-4.

    Google Scholar 

  • Baset Mia, M. A., Shamsuddin, Z. H., Wahab, Z., & Marziah, M. (2010). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured musa plantlets under nitrogen-free hydroponics condition. Australian Journal of Crop Science, 4(2), 85–90.

    CAS  Google Scholar 

  • Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Berg, G., & Smalla, K. (2009). Plant species versus soil type: Which factors influence the structure and function of the microbial communities in the rhizosphere? FEMS Microbiology Ecology, 68, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Boccio, J. R., & Iyengar, V. (2003). Iron deficiency causes, consequences, and strategies to overcome this nutritional problem. Biological Trace Element Research, 94, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 59–604.

    Article  Google Scholar 

  • Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74, 738–744.

    Article  CAS  PubMed  Google Scholar 

  • Brunetti, G., Farrag, K., Soler-Rovira, P., Nigro, F., & Senesi, N. (2011). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160, 517–523.

    Article  CAS  Google Scholar 

  • Cakmakci, R., Dönmez, F., Aydın, A., & Sahin, F. (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38, 1482–1487.

    Article  CAS  Google Scholar 

  • Cakmakci, R., Dönmez, M. F., & Erdoğan, A. (2007). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry, 31, 189–199.

    CAS  Google Scholar 

  • Calvo, P., Ormeno-Orrillo, E., Martinez-Romero, E., & Zuniga, D. (2010). Characterization of Bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology, 41, 899–906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carson, J. K., Campbell, L., Rooney, D., Clipson, N., & Gleeson, D. B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiology Ecology, 67, 381–388.

    Article  CAS  PubMed  Google Scholar 

  • Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Screening of plant growth promoting rhizobacteria to promote early soybean growth. Soil Science Society of America, 63, 1670–1680.

    Article  CAS  Google Scholar 

  • Chakraborty, U., Chakraborty, B. N., & Chakraborty, A. P. (2012). Induction of plant growth promotion in Camellia sinensis by Bacillus megaterium and its bioformulations. World Journal of Agricultural Sciences, 8(1), 104–112.

    Google Scholar 

  • Chen, Y., Fan, J. B., Du, L., Xu, H., Zhang, Q. H., & He, Y. Q. (2014). The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Applied Soil Ecology, 84, 235–244.

    Article  Google Scholar 

  • Chincholkar, S. B., Chaudhari, B. L., & Rane, M. R. (2007). Microbial siderophores: State of art. In S. B. Chincholkar & A. Varma (Eds.), Microbial siderophores (pp. 233–242). Germany: Springer Verlag.

    Chapter  Google Scholar 

  • Combes-Meynet, E., Pothier, J. F., Moënne-Loccoz, Y., & Prigent-Combaret, C. (2011). The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Molecular Plant - Microbe Interactions, 24, 271–284.

    Article  CAS  PubMed  Google Scholar 

  • Crowley, D. E., Romheld, V., Marschner, H., & Szanizlo, P. J. (1992). Root-microbial effect on iron uptake from siderophores and phytosiderophores. Plant and Soil, 142, 1–7.

    Article  CAS  Google Scholar 

  • Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.

    Article  CAS  Google Scholar 

  • Dangar, T. K., & Basu, P. S. (1987). Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb. var. mungo. Biologia Plantarum, 29, 350–354.

    Article  CAS  Google Scholar 

  • Das, I., & Pradhan, M. (2016). Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 281–291). New Delhi: Springer.

    Chapter  Google Scholar 

  • Das, A., Prasad, R., Srivastava, A., Giang, P. H., Bhatnagar, K., & Varma, A. (2007). Fungal siderophores: Structure, functions and regulation. In A. Varma & S. Chincholkar (Eds.), Soil biology (pp. 1–42). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Datta, M., Palit, R., Sengupta, C., Pandit, M. K., & Banerjee, S. (2011). Plant growth promoting rhizobacteria enhance growth and yield of chili (Capsicum annuum L.) under field conditions. Australian Journal of Crop Science, 5(5), 531–536.

    Google Scholar 

  • de-Bashan, L. E., & Bashan, Y. (2008). Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant–bacterium interactions. Applied Environmental Microbiology, 74, 6797–6802.

    Google Scholar 

  • de Freitas, J. R., Banerjee, M. R., & Germida, J. J. (2007). Phosphate solubilising rhizobacteria enhance the growth and yield but not phosphorus uptake of canola. Biology and Fertility of Soils, 24, 358–364.

    Article  Google Scholar 

  • Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159, 371–394.

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107–149.

    Article  CAS  Google Scholar 

  • Dominguez-Nuñez, J. A., Benito, B., Berrocal-Lobo, M., & Albanesi, A. (2016). Mycorrhizal fungi: role in the solubilization of potassium. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 77–98). New Delhi: Springer.

    Chapter  Google Scholar 

  • Dotaniya, M. L., Meena, V. D., Basak, B. B., & Meena, R. S. (2016). Potassium uptake by crops as well as microorganisms. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 267–280). New Delhi: Springer.

    Chapter  Google Scholar 

  • Earanna, N. (2001). VA mycorrhizal association in Medicinal plants of South Eastern Dry Zone of Karnataka and Response of Phyllanthus amarus and Withania somnifera to inoculation with VAM fungi and plant growth promoting Rhizomicro-organisms. Ph.D. thesis submitted to the University of Agricultural Sciences, GKVK, Bangalore.

    Google Scholar 

  • Ekin, Z. (2010). Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. African Journal of Biotechnology, 9, 3794–3800.

    CAS  Google Scholar 

  • Esitken, A., Yildiz, H. E., Ercisli, S., Donmez, M. F., Turan, M., & Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae, 124, 62–66.

    Article  CAS  Google Scholar 

  • Erturk, Y., Ercisli, S., Haznedar, A., & Cakmakci, R. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Resaerch, 42, 91–98.

    Google Scholar 

  • Filippi, M. C. C., da Silva, G. B., Silva-Lobo, V. L., Côrtes, M. V. C. B., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58, 160–166.

    Google Scholar 

  • Genilloud, O., González, I., Salazar, O., Martín, J., Tormo, J. R., & Vicente, F. (2011). Current approaches to exploit actinomycetes as a source of novel natural products. Journal of Industrial Microbiology & Biotechnology, 38, 375–389.

    Article  CAS  Google Scholar 

  • Glick, B. R., & Stearns, J. C. (2011). Making phytoremediation work better: Maximizing a plant’s growth potential in the midst of adversity. International Journal of Phytoremediation, 13(1), 4–16.

    Article  PubMed  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329–339.

    Article  CAS  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Gundala, P. B., Chinthala, P., & Sreenivasulu, B. (2013). A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research & Reviews: Journal of Microbiology and Biotechnology, 2(1), 1–7.

    Google Scholar 

  • Gupta, V. (2012). Beneficial microorganisms for sustainable agriculture. Microbiology Australia, 3, 113–115.

    Google Scholar 

  • Gutiérrez Mañero, F. J., Probanza, A., Ramos, B., Colón Flores, J. J., & Lucas García, J. A. (2003). Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). Journal of Plant Nutrition, 26, 1101–1115.

    Article  CAS  Google Scholar 

  • Han, H. S., Supanjani, & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52, 130–136.

    CAS  Google Scholar 

  • Hassan, E. A., Hassan, E. A., & Hamad, E. H. (2010). Microbial solubilization of phosphate-potassium rocks and their effect on khella (Ammi visnaga) growth. Annals of Agricultural Sciences, 55(1), 37–53.

    Google Scholar 

  • Hemashenpagam, N., & Selvaraj, T. (2011). Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR’s) on medicinal plant Solanum viarum seedlings. Journal of Environmental Biology, 32, 579–583.

    CAS  PubMed  Google Scholar 

  • Houlden, A., Timms-Wilson, T. M., Day, M. J., & Bailey, M. J. (2008). Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiology Ecology, 65, 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Ilippi, M. C. C., da Silva, G. B., Silva-Lobo, V. L., Cortes, M., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58, 160–166.

    Article  Google Scholar 

  • Jaiswal, D. K., Verma, J. P., Prakash, S., Meena, V. S., & Meena, R. S. (2016). Potassium as an important plant nutrient in sustainable agriculture: A state of the art. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 21–29). New Delhi: Springer.

    Chapter  Google Scholar 

  • Jha, Y., & Subramanian, R. B. (2016). Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 149–162). New Delhi: Springer.

    Chapter  Google Scholar 

  • Kalaiselvi, P., & Anthoniraj, S. (2009). In vitro solubilization of silica and potassium from silicate minerals by silicate solubilizing bacteria. Journal of Ecobiology, 24(2), 159–168.

    CAS  Google Scholar 

  • Karakurt, H., Kotan, R., Dadasoglu, F., Aslantaş, R., & Şahin, F. (2011). Effects of plant growth promoting rhizobacteria on fruit set, pomological and chemical characteristics, color values, and vegetative growth of sour cherry (Prunus cerasus cv. Kutahya). Turkish Journal of Biology, 35, 283–291.

    CAS  Google Scholar 

  • Kaymak, H. C., Yarali, F., Guvenc, I., & Figen, D. M. (2008). The effect of inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. African Journal of Biotechnology, 7(24), 4479–4483.

    CAS  Google Scholar 

  • Kaymak, H. C., Guvenc, I., Yarali, F., & Donmez, M. F. (2009). The effects of biopriming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish Journal of Agriculture and Forestry, 33(2), 173–179.

    CAS  Google Scholar 

  • Kennedy, I. R., Chouhury, A. T. M. A., & Kecskes, M. L. (2004). Non-symbiotic bacterial diazotrophs in crop farming systems; can their potential for plant growth promotion be latter exploited? Soil Biology and Biochemistry, 36, 1229–1244.

    Article  CAS  Google Scholar 

  • Khamna, S., Yokota, A., Peberdy, J. F., & Lumyong, S. (2010). Indole-3-acetic acid production by Streptomyces sp isolated from some thai medicinal plant rhizosphere soils. EurAsian Journal of BioSciences, 4, 23–32.

    Article  CAS  Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agronomy for Sustainable Development, 27, 29–43.

    Article  Google Scholar 

  • Kloepper, J. W., & Schroth, M. N. (1978). Plant growth promoting rhizobacteria on radishes (Angers, Edt), Proceeding of the Fourth International Conference on Plant Pathogenic Bacteria Gibbert-Clarey, Tours, pp. 24, 879–882.

    Google Scholar 

  • Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C., & Negi, S. (2012a). Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities an in-vitro study. Recent Research in Science and Technology, 4, 1–5.

    Google Scholar 

  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012b). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 67, 493–499.

    Article  CAS  Google Scholar 

  • Kumar, A., Bahadur, I., Maurya, B. R., Raghuwanshi, R., Meena, V. S., Singh, D. K., & Dixit, J. (2015). Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? Journal of Pure and Applied Microbiology, 9(1), 715–724.

    Google Scholar 

  • Kumar, A., Patel, J. S., Bahadur, I., & Meena, V. S. (2016). The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 61–75). New Delhi: Springer.

    Chapter  Google Scholar 

  • Kundu, B. S., & Gaur, A. C. (1980). Effect of phosphobacteria on the yield and phosphate uptake of potato crop. Current Science, 49, 159–160.

    Google Scholar 

  • Lavakusha, Yadav, J., Verma, J. P., Jaiswal, D. K., & Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62, 123–128.

    Article  Google Scholar 

  • Li, F. C., Li, S., Yang, Y. Z., & Cheng, L. J. (2006). Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrologica et Mineralogica, 25, 440–448.

    CAS  Google Scholar 

  • Lian, B., Fu, P. Q., Mo, D. M., & Liu, C. Q. (2002). A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sinica, 22, 179–182.

    CAS  Google Scholar 

  • Liu, W., Xu, X., Wu, S., Yang, Q., Luo, Y., & Christie, P. (2006). Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, B. R., Tinoco-Ojanguren, C., Bacilioa, M., Mendozac, A., & Bashana, Y. (2012). Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environmental and Experimental Botany, 81, 26–36.

    Article  CAS  Google Scholar 

  • Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.

    Article  CAS  PubMed  Google Scholar 

  • Mäder, P., Kiser, F., Adholeya, A., Singh, R., Uppal, H. S., Sharma, A. K., Srivastava, R., Sahai, V., Aragno, M., Wiemkein, A., Johri, B. N., & Fried, P. M. (2010). Inocula-tion of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biology and Biochemistry, 43, 609–619.

    Article  CAS  Google Scholar 

  • Marino, D., Frendo, P., González, E. M., Puppo, A., & Arrese-Igor, C. (2007). NADPH recycling systems in oxidative stressed nodules: A key role for the NADP+-dependent isocitrate dehydrogenase. Planta, 225, 413–421.

    Article  CAS  PubMed  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic.

    Google Scholar 

  • Masood, S., & Bano, A. (2016). Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 137–147). New Delhi: Springer.

    Chapter  Google Scholar 

  • Maurya, B. R., Meena, V. S., & Meena, O. P. (2014). Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos, 27(1), 181–187.

    Google Scholar 

  • Medina, A., Probanza, A., Gutierrez Mañero, F. J., & Azcón, R. (2003). Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Applied Soil Ecology, 22, 15–28.

    Article  Google Scholar 

  • Meena, O. P., Maurya, B. R., & Meena, V. S. (2013). Influence of K- solubilizing bacteria on release of potassium from waste mica. Agronomy for Sustainable Development, 1(1), 53–56.

    Google Scholar 

  • Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research, 169, 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Meena, R. K., Singh, R. K., Singh, N. P., Meena, S. K., & Meena, V. S. (2015a). Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology. doi:10.1016/j.bcab.2015.08.006.

    Google Scholar 

  • Meena, R. S., Meena, V. S., Meena, S. K., & Verma, J. P. (2015b). The needs of healthy soils for a healthy world. Journal of Cleaner Production, 102, 560–561.

    Article  Google Scholar 

  • Meena, R. S., Meena, V. S., Meena, S. K., & Verma, J. P. (2015c). Towards the plant stress mitigate the agricultural productivity: A book review. Journal of Cleaner Production, 102, 552–553.

    Article  Google Scholar 

  • Meena, R. S., Yadav, R. S., Meena, H., Kumar, S., Meena, Y. K., & Singh, A. (2015d). Towards the current need to enhance legume productivity and soil sustainability worldwide: A book review. Journal of Cleaner Production, 104, 513–515.

    Article  Google Scholar 

  • Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015e). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347.

    Article  Google Scholar 

  • Meena, V. S., Meena, S. K., Verma, J. P., Meena, R. S., & Ghosh, B. N. (2015f). The needs of nutrient use efficiency for sustainable agriculture. Journal of Cleaner Production, 102, 562–563.

    Article  Google Scholar 

  • Meena, V. S., Meena, S. K., Verma, J. P., Meena, R. S., & Jat, L. K. (2015g). Current trend to mitigate climate change and sustainable agriculture: A book review. Journal of Cleaner Production, 102, 548–549.

    Article  Google Scholar 

  • Meena, V. S., Verma, J. P., & Meena, S. K. (2015h). Towards the current scenario of nutrient use efficiency in crop species. Journal of Cleaner Production, 102, 556–557.

    Article  Google Scholar 

  • Meena, R. S., Bohra, J. S., Singh, S. P., Meena, V. S., Verma, J. P., Verma, S. K., & Sihag, S. K. (2016). Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: A book review. Journal of Cleaner Production, 112(1), 1298–1260.

    Google Scholar 

  • Meena, V. S., Bahadur, I., Maurya, B. R., Kumar, A., Meena, R. K., Meena, S. K., et al. (2016). Potassium-solubilizing microorganism in evergreen agriculture: An overview. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 1–20). New Delhi: Springer.

    Google Scholar 

  • Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71, 413–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Nadeem, S. M., Shaharoona, B., Arshad, M., & Crowley, D. E. (2012). Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Applied Soil Ecology, 62, 147–154.

    Article  Google Scholar 

  • Neilands, J. B. (1984). Siderophores of bacteria and fungi. Microbiological Sciences, 1, 9–14.

    CAS  PubMed  Google Scholar 

  • Ngoma, L., Mogatlanyane, K., & Babalola, O. O. (2014). Screening of endophytic bacteria towards the development of cottage industry: An in vitro study. Journal of Human Ecology, 47(1), 45–63.

    Google Scholar 

  • Nihorimbere, V., Ongena, M., Cawoy, H., Brostaux, Y., Kakana, P., Jourdan, E., & Thonart, P. (2010). Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: Reduction of local Fusarium disease and growth promotion. African Journal of Microbiology Research, 4(11), 1135–1142.

    Google Scholar 

  • Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy, Society and Environment, 15(2), 327–337.

    Google Scholar 

  • Orhan, E., Esitken, A., Ercisli, S., Turan, M., & Sahin, F. (2006). Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae, 111(1), 38–43.

    Article  CAS  Google Scholar 

  • Pal, K. K., Tilak, K. V. B. R., Saxena, A. K., Dey, R., & Singh, C. S. (2001). Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiological Research, 156, 209–223.

    Article  CAS  PubMed  Google Scholar 

  • Panhwar, Q. A., Othman, R., Rahman, Z. A., Meon, S., & Ismail, M. R. (2012). Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. African Journal of Biotechnology, 11(11), 2711–2719.

    CAS  Google Scholar 

  • Parisi, B., & Vallee, B. L. (1969). Metal enzyme complexes activated by zinc. The Journal of Biological Chemistry, 179, 803–807.

    Google Scholar 

  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31.

    Google Scholar 

  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peix, A., Mateos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E., & Velázquez, E. (2001). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 33, 1927–1935.

    Article  CAS  Google Scholar 

  • Pereira, P., Ibanez, F., Rosenblueth, M., Etcheverry, M., Martinez-Romero, E. (2011). Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.), through culture dependent and culture-independent methods. International Scholarly Research Network Ecology pp. 1–10.

    Google Scholar 

  • Phua, C. K. H., Abdul Wahid, A. N., & Abdul Rahim, K. (2012). Development of multifunctional biofertilizer formulation from indigenous microorganisms and evaluation of their N2-fixing capabilities on Chinese cabbage using 15N tracer technique. Pakistan Journal of Agricultural Sciences, 35(3), 673–679.

    Google Scholar 

  • Pineda, A., Zheng, S. J., van Loon, J. J. A., & Dicke, M. (2012). Rhizobacteria modify plant–aphid interactions: A case of induced systemic susceptibility. Plant Biology, 14(1), 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Prajapati, K., Sharma, M. C., & Modi, H. A. (2013). Growth promoting effect of potassium solubilizing microorganisms on Abelmoschus esculentus. International Journal of Agriculture Sciences, 3(1), 181–188.

    Google Scholar 

  • Prakash, S., & Verma, J. P. (2016). Global perspective of potash for fertilizer production. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 327–331). New Delhi: Springer.

    Chapter  Google Scholar 

  • Priyadharsini, P., & Muthukumar, T. (2016). Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 111–125). New Delhi: Springer.

    Chapter  Google Scholar 

  • Probanza, A., García, J. A. L., Palomino, M. R., Ramos, B., & Mañero, F. J. G. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 20(2), 75–84.

    Article  Google Scholar 

  • Puente, M. E., Li, C. Y., & Bashan, Y. (2009a). Rock-degrading endophytic bacteria in cacti. Environmental and Experimental Botany, 66, 389–401.

    Article  CAS  Google Scholar 

  • Puente, M. E., Li, C. Y., & Bashan, Y. (2009b). Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environmental and Experimental Botany, 66, 402–408.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361.

    Article  CAS  Google Scholar 

  • Raghavendra, M. P., Nayaka, S. C., & Nuthan, B. R. (2016). Role of rhizosphere microflora in potassium solubilization. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 43–59). New Delhi: Springer.

    Chapter  Google Scholar 

  • Raj, S. A. (2004). Solubilization of silicate and concurrent release of phosphorus and potassium in rice ecosystem. Book chapter-conference paper Biofertilizers technology, Coimbatore, pp. 372–378.

    Google Scholar 

  • Rajasekar, S., & Elango, R. (2011). Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Current Botany, 2(8), 27–30.

    Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008a). Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99, 3491–3498.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008b). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71, 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2006). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, M., Ma, Y., & Freitas, H. (2008). Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. Journal of Basic Microbiology, 48, 1–9.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Ae, N., & Freitas, H. (2009). Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 77, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574.

    Article  CAS  PubMed  Google Scholar 

  • Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gourbière, F., Thioulouse, J., & Nazaret, S. (2000). Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microbial Ecology, 39, 263–272.

    CAS  PubMed  Google Scholar 

  • Rashedul, I. M., Madhaiyan, M., Deka Boruah, H. P., Yim, W., Lee, G., Saravanan, V. S., et al. (2009). Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Microbial Biotechnology, 19, 1213–1222.

    Google Scholar 

  • Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 235–253). New Delhi: Springer.

    Chapter  Google Scholar 

  • Reino, J. L., Guerrero, R. F., Hernandez-Galan, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123.

    Article  CAS  Google Scholar 

  • Revillas, J. J., Rodelas, B., Pozo, C., Martinez-Toledo, M. V., & Gonzalez, L. J. (2000). Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. Journal of Applied Microbiology, 89, 486–493.

    Article  CAS  PubMed  Google Scholar 

  • Riggs, P. D., Mikulich, S. K., & Hall, S. (2001). Effects of Pemoline on ADHD, antisocial behaviors, and substance use in adolescents with conduct disorder and substance use disorder. In College on problems of drug dependence: 63rd annual scientific meeting. Rockville: National Institute on Drug Abuse.

    Google Scholar 

  • Robin, A., Mazurier, S., Mougel, C., Vansuyt, G., Corberand, T., Meyer, J. M., & Lemanceau, P. (2007). Diversity of root-associated fluorescent Pseudomonads as affected by ferritin overexpression in tobacco. Environmental Microbiology, 9, 1724–1737.

    Article  CAS  PubMed  Google Scholar 

  • Rooney, D. C., & Clipson, N. J. W. (2009). Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil. Microbial Ecology, 57, 4–13.

    Article  PubMed  Google Scholar 

  • Rudrappa, T. T., Czymmek, K. J. K., Pare, P. W. P., & Bais, H. P. H. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148(3), 1547–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Sa, A. L. B., Disa, A. C. F., Teixerira, M. D. A., & Vieira, R. F. (2012). Contribution of N2 fixation for the World Agriculture. In Bacteria in agrobiology: Plant probiotics, (pp. 315–324).

    Google Scholar 

  • Sadeghi, A., Karimi, E., Dahaji, P. A., Javid, M. G., Dalvand, Y., & Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28(4), 1503–1509.

    Article  CAS  PubMed  Google Scholar 

  • Saha, M., Maurya, B. R., Bahadur, I., Kumar, A., & Meena, V. S. (2016a). Can potassium-solubilising bacteria mitigate the potassium problems in India? In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 127–136). New Delhi: Springer.

    Chapter  Google Scholar 

  • Saha, M., Maurya, B. R., Meena, V. S., Bahadur, I., & Kumar, A. (2016b). Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatalysis and Agricultural Biotechnology, 7, 202–209.

    Article  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635–648.

    Article  CAS  Google Scholar 

  • Saravanakumar, D., Lavanya, N., Muthumeena, B., Raguchander, T., Suresh, S., & Samiyappan, R. (2008). Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaf folder pest. Journal of Applied Entomology, 132(6), 469–479.

    Article  Google Scholar 

  • Saravanan, V. S., Madhaiyan, M., & Thangaraju, M. (2007). Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere, 66, 1794–1798.

    Article  CAS  PubMed  Google Scholar 

  • Schippers, B., Scheffer, R. J., Lugtenberg, J. J., & Weisbek, P. J. (1995). Biocoating of seed with plant growth promoting rhizobacteria to improve plant establishment. Outlook on Agriculture, 24, 179–185.

    Google Scholar 

  • Selvaraj, T., Rajeshkumar, S., Nisha, M. C., Wondimu, L., & Tesso, M. (2008). Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Maejo International Journal of Science and Technology, 2(3), 516–525.

    CAS  Google Scholar 

  • Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H., & Kandeler, E. (2001). Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology, 67, 4215–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch, A., Reitner, B., Pfeifer, U., & Wilhelm, E. (2002). Cultivation independent population analysis of bacterial endophyte in three potatoes varieties based on eubacterial and actinomycetes specific PCR of 16S rRNA genes. Microbiology Ecology, 39, 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A., Shankhdhar, D., & Shankhdhar, S. C. (2016). Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 203–219). New Delhi: Springer.

    Chapter  Google Scholar 

  • Shrivastava, M., Srivastava, P. C., & D’Souza, S. F. (2016). KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 221–234). New Delhi: Springer.

    Chapter  Google Scholar 

  • Sheng, X. F., & He, L. Y. (2006). Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52(1), 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Sindhu, S. S., Parmar, P., & Phour, M. (2012). Nutrient cycling: Potassium solubilization by microorganisms and improvement of crop growth. In N. Parmar & A. Singh (Eds.), Geomicrobiology and biogeochemistry: Soil biology. Germany: Springer-Wien.

    Google Scholar 

  • Sindhu, S. S., Parmar, P., Phour, M., & Sehrawat, A. (2016). Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 171–185). New Delhi: Springer.

    Chapter  Google Scholar 

  • Singh, J. S. (2013). Plant growth promoting rhizobacteria. Resonance, 18, 275–281.

    Article  Google Scholar 

  • Singh, N. P., Singh, R. K., Shahi, J. P., Jaiswal, H. K., & Singh, T. (2013). Application of bacterial endophytes as bioinoculant enhances germination, seedling growth and yield of maize (Zea mays L.). Range Management and Agroforestry, 34(2), 171–174.

    Google Scholar 

  • Singh, N. P., Singh, R. K., Meena, V. S., & Meena, R. K. (2015). Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos, 28(1), 86–99.

    Google Scholar 

  • Sinha, S., & Mukherjee, S. K. (2008). Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology, 56, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Socha, A. L., & Guerinot, M. L. (2014). Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 5, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperberg, J. I. (1958). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural And Resource Economics, 9(6), 778–781.

    Article  Google Scholar 

  • Stajner, D., Kevreaan, S., Gasaić, O., Mimica-Dudić, N., & Zongli, H. (1997). Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biologia Plantarum, 39, 441–445.

    Article  CAS  Google Scholar 

  • Sugumaran, P., & Janarthanam, B. (2007). Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultural Sciences, 3(3), 350–355.

    Google Scholar 

  • Sullivan, T. S., Ramkissoon, S., Garrison, V. H., Ramsubhag, A., & Thies, J. E. (2012). Siderophore production of African dust microorganisms over Trinidad and Tobago. Aerobiologia, 28, 391–401.

    Article  Google Scholar 

  • Sumathi, C. S., Ramesh, N., Balasubramanian, V., & Rajesh, K. V. (2011). Microbial bioinoculant potential on turmeric (Curcuma Longa L.) growth improvement under tropical nursery conditions. Asian Journal of Experimental Biological Sciences, 2(4), 612–623.

    Google Scholar 

  • Sumithra, P., & Selvaraj, T. (2011). Influence of Glomus walkeri and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Sphaeranthus amaranthoides (L.) Burm. Journal of Agricultural Technology, 7(6), 1685–1692.

    Google Scholar 

  • Supanjani Han, H. S., Jung, S. J., & Lee, K. D. (2006). Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agronomy for Sustainable Development, 26, 233–240.

    Article  CAS  Google Scholar 

  • Syers, J. K. (2003). Potassium in soils: Current concepts. In A. E. Johnston (Ed.), Proceedings of the IPI Golden Jubilee Congress 1952–2002 held at Basel Switzerland 8–10 Oct 2002. Feed the soil to feed the people. The role of potash in sustainable agriculture (pp. 301–310). Basel: International Potash Institute.

    Google Scholar 

  • Tajini, F., Trabelsi, M., & Drevon, J. J. (2012). Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 19, 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Teotia, P., Kumar, V., Kumar, M., Shrivastava, N., & Varma, A. (2016). Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 315–325). New Delhi: Springer.

    Chapter  Google Scholar 

  • Thepsukhon, A., Choonluchanon, S., Tajima, S., Nomura, M., & Ruamrungsri, S. (2013). Identification of endophytic bacteria associated with N2 fixation and indole acetic acid synthesis as growth promoters in curcuma alismatifolia gagnep. Journal of Plant Nutrition, 36, 1424–1438.

    Article  CAS  Google Scholar 

  • Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology, 59, 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth promoting rhizobacteria under salinity condition. Pedosphere, 2, 214–222.

    Article  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidants status of wheat plant under saline condition. Plant Biology, 4, 605–611.

    Article  CAS  Google Scholar 

  • Van Der Putten, W. H. (2003). Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology, 84, 2269–2280.

    Article  Google Scholar 

  • Velázquez, E., Silva, L. R., Ramírez-Bahena, M. H., & Peix, A. (2016). Diversity of potassium-solubilizing microorganisms and their interactions with plants. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 99–110). New Delhi: Springer.

    Chapter  Google Scholar 

  • Verma, J. P., Yadav, J., & Tiwari, K. N. (2012a). Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Communications in Soil Science and Plant Analysis, 43, 605–621.

    Article  CAS  Google Scholar 

  • Verma, J. P., Yadav, J., Tiwari, K. N., & Kumar, A. (2012b). Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecological Engineering, 51, 282–286.

    Article  Google Scholar 

  • Verma, J. P., Yadav, J., Tiwari, K. N., & Kumar, A. (2013). Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecological Engineering, 51, 282–286.

    Google Scholar 

  • Verma, J. P., Jaiswal, D. K., Meena, V. S., Kumar, A., & Meena, R. S. (2015a). Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. Journal of Cleaner Production, 107, 793–794.

    Article  Google Scholar 

  • Verma, J. P., Jaiswal, D. K., Meena, V. S., & Meena, R. S. (2015b). Current need of organic farming for enhancing sustainable agriculture. Journal of Cleaner Production, 102, 545–547.

    Article  Google Scholar 

  • von Braun, J. (2007). The world food situation: New driving forces and required actions. Food policy report. Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • Von Wiren, N., Roemheld, V., Morel, J. L., Guckert, A., & Marschner, H. (1993). Influence of microorganisms on iron acquisition in maize. Soil Biology and Biochemistry, 25, 371–376.

    Article  Google Scholar 

  • Wahyudi, A. T., Astuti, R. P., Widyawati, A., Meryandini, A. A., & Nawangsih, A. A. (2011). Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. Journal of Microbiology and Antimicrobials, 3(2), 34–40.

    Google Scholar 

  • Wei, L., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology, 86, 221–224.

    Article  Google Scholar 

  • Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55(396), 353–364.

    Article  CAS  PubMed  Google Scholar 

  • White, J. G., & Zasoski, R. J. (1999). Mapping soil micronutrients. Field Crops Research, 60, 11–26.

    Article  Google Scholar 

  • Whitelaw, M. A. (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy, 69, 99–151.

    Article  CAS  Google Scholar 

  • Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.

    Article  Google Scholar 

  • Wu, X. Q., Hou, L. L., Sheng, J. M., Ren, J. H., Zheng, L., Chen, D., & Ye, J. R. (2011). Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biology and Fertility of Soils, 48, 385–391.

    Article  Google Scholar 

  • Yadav, J., Verma, J. P., & Tiwari, K. N. (2010). Effect of plant growth promoting Rhizobacteria on seed germination and plant growth Chickpea (Cicer arietinum L.) under in vitro conditions. Biological Forum-An International Journal, 2(2), 15–18.

    Google Scholar 

  • Yadav, B. K., & Sidhu, A. S. (2016). Dynamics of potassium and their bioavailability for plant nutrition. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 187–201). New Delhi: Springer.

    Chapter  Google Scholar 

  • Yadegari, M., Farahani, G. H. N., & Mosadeghzad, Z. (2012). Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). African Journal of Agricultural Research, 7(34), 4716–4723.

    Article  Google Scholar 

  • Yasin, M., Munir, I., & Faisal, M. (2016). Can Bacillus spp. enhance K+ uptake in crop species. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 163–170). New Delhi: Springer.

    Chapter  Google Scholar 

  • Yasmeen, A., Basra, S. M. A., Wahid, A., Nouman, W., & Rehman, H. (2012). Exploring the potential of moringa (Moringa oleifera) leaf extract (MLE) as seed priming agent in improving wheat performance. Turkish Journal of Botany, 37, 512–520.

    Google Scholar 

  • Yasmin, S., Bakar, M. A. R., Malik, K. A., & Hafeez, F. Y. (2004). Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. Journal of Basic Microbiology, 3, 241–252.

    Article  CAS  Google Scholar 

  • Yu, X., Liu, X., Zhu, T. H., Liu, G. H., & Mao, C. (2011a). Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils, 47, 437–446.

    Article  CAS  Google Scholar 

  • Yu, X. M., Ai, C. X., Xin, L., & Zhou, G. F. (2011b). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.

    Article  Google Scholar 

  • Yu, X., Liu, X., Zhu, T. H., Liu, G. H., & Mao, C. (2012). Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. European Journal of Soil Biology, 50, 112–117.

    Article  CAS  Google Scholar 

  • Zahedi, H. (2016). Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 31–42). New Delhi: Springer.

    Chapter  Google Scholar 

  • Zahir, A. Z., Arshad, M., & Frankenberger, W. T., Jr. (2004). Plant growth promoting rhizobacteria: Application and perspectives in agriculture. Advances in Agronomy, 81, 97–168.

    Article  CAS  Google Scholar 

  • Zaidi, S., Usmani, S., Singh, B. R., & Musarrat, J. (2006). Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64, 991–997.

    Article  CAS  PubMed  Google Scholar 

  • Zarjani, J. K., Aliasgharzad, N., Oustan, S., Emadi, M., & Ahmadi, A. (2013). Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Archives of Agronomy and Soil Science, 59, 1713–1723.

    Article  CAS  Google Scholar 

  • Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., & Paré, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant - Microbe Interactions, 21, 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, A., Zhao, G., Gao, T., Wang, W., Li, J., Zhang, S., & Zhu, B. (2013). Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: A soil microorganism with biological control potential. African Journal of Microbiology Research, 7(1), 41–47.

    Article  CAS  Google Scholar 

  • Zhao, Q. Y., Shen, Q. R., Ran, W., Xiao, T. J., Xu, D. B., & Xu, Y. C. (2011). Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biology and Fertility of Soils, 47, 507–514.

    Article  CAS  Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33, 406–413.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Singh Meena or Sunita Kumari Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Meena, V.S. et al. (2016). Can Bacillus Species Enhance Nutrient Availability in Agricultural Soils?. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_16

Download citation

Publish with us

Policies and ethics