Skip to main content

Dynamics of Potassium and Their Bioavailability for Plant Nutrition

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Many physical, chemical, and mineralogical factors govern the release of K from micas by cation exchange reaction and dissolution processes. Mainly in Indian agricultural conditions, most of the farmers use only nitrogen and phosphorus and do not use the potassic fertilizer due to unawareness that the problem of K deficiency occurs in soils and it is reported that ~72 % of soils need immediate K fertilization for good crop production. The efficient soil microorganisms influence the availability of minerals in soil and play a major role in ion cycling and soil fertility. A number of microorganisms such as bacteria (Bacillus mucilaginosus, B. edaphicus, B. circulans, B. cereus, B. subtilis, B. coagulans, B. amyloliquefaciens, B. megaterium, Enterobacter hormaechei, Flectobacillus spp., Acidithiobacillus ferrooxidans, Paenibacillus spp.), fungal strains (Aspergillus niger, A. fumigatus, and A. terreus), and yeast (Torulaspora globosa) solubilize the insoluble K to soluble forms of K for plant uptake. The main mechanisms of KSMs are acidolysis, chelation, exchange reactions, complexolysis, and production of organic acids. Therefore, the efficient KSMs should be applied for solubilization of unavailable form of K to an available form of K that is taken up by the plant for their growth and development. Therefore, our aim is to elaborate on the studies of native K-solubilizing microbes to develop efficient microbial consortium and their uses as biofertilizers or a biocontrol agent, which helps to enhance the K availability in agricultural soils and increase crop production and environmental and agricultural sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrov VG (1985) Organo-mineral fertilizers and silicate bacteria. Dokl Akad Nauk 7:43–48

    Google Scholar 

  • Alexander M (1985) Introduction to soil microbiology. Wiley, New York, pp 382–385

    Google Scholar 

  • Amtmann A, Hammond JP, Armengaud P, White PJ (2006) Nutrient sensing and signaling in plants: potassium and phosphorus. Adv Bot Res 43:209–257

    Article  CAS  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Archana DS, Savalgi VP, Alagawadi AR (2008) Effect of potassium solubilizing bacteria on growth and yield of maize. Soil Biol Ecol 28:9–18

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2012) Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet 9:627–630

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2010) Coronatine-intensive 1 (COII) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant 3:390–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi R, Tewari R, Nayyar H (2011) Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. Int Res J Microbiol 2:484–503

    Google Scholar 

  • Badar MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Balamurugan A (2012) Impact of different temperature, carbon and nitrogen sources on solubilization efficiency of native potassium solubilizing bacteria from tea (Camellia sinensis). J Biol Res 3:36–42

    Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperate region soils. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy Journal, Madison, pp 131–162

    Google Scholar 

  • Bin L, Bin W, Mu P, Liu C, Teng HH (2010) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Google Scholar 

  • Chen S, Lian B, Liu CQ (2008) Bacillus mucilaginosus on weathering of phosphorite and primary analysis of bacterial proteins during weathering. Chin J Geochem 27:209–216

    Article  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1:88–92

    Article  CAS  Google Scholar 

  • El-Hadad ME, Mustafa MI, Selim Sh M, El-Tayeb TS, Mahgoob AEA, Norhan H, Abdel A (2011) The nematicidal effect of some bacterial biofertilizers on meloidogyne incognita in sandy soil. Braz J Microbiol 42:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein AH (1994) Solubilization of exogenous phosphates by gram negative bacteria. In: Silver S et al (eds) Cellular and molecular biology of phosphate and phosphorylated compounds in microorganisms. ASM, Washington, DC, pp 197–203

    Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM 9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and Reviews. J Microbiol Biotechnol 2:1–7

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hasan R (2002) Potassium status of soils in India. Better Crops Int 16:3–5

    Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium biloji on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil 68:261–267

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth- promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lian BA (1998) A study on how silicate bacteria GY92 dissolves potassium from illite. Acta Mineral Sin 18:234–238

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Liu W, Xu X, Wu S, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Malavolta E (1985) Potassium status of tropical and subtropical region soils. In: Munson RD (ed) Potassium in agriculture. Am Soc Agron J, Madison, pp 163–200

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences. http://jimmcafee.tamu.edu/files/potassium

  • Mclean EO, Watson ME (1985).Soil measurement of plant-available potassium. In: Munson RD (ed) Potassium in agriculture. Am Soc Agron J, Madison, pp 277–278

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microb Res 169:337–347

    Article  CAS  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition, 4th edn. International Potash Institute, IPI, Bern, 685p

    Google Scholar 

  • Mishra MK, Srivastava PC, Ghosh D (1993) Forms of potassium in relation to soil properties and clay mineralogy in some profiles of Chambal command area, Rajasthan. J Pot Res 9:187–194

    Google Scholar 

  • Muentz A (1890) Surla decomposition desrochesetla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leafl 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoschus esculentus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Raj SA (2004) Solubilization of silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Conference paper biofertilizers technology, Coimbatore, pp 372–378

    Google Scholar 

  • Ramamoorthy B, Paliwal KV (1976) Potassium adsorption ratio for some paddy soils in relation to their potassium availability. Soil Sci 99:236–242

    Article  Google Scholar 

  • Ramamurthy B, Bajaj JC (1969) Soil fertility map of India. Indian Agril Res Inst, New Delhi

    Google Scholar 

  • Rogers JR, Bennett PC, Choi WJ (1998) Feldspars as a source of nutrients for microorganisms. Am Mineral 83:1532–1540

    Article  CAS  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato- Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55:577–582

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromather Crops 21:118–124

    Google Scholar 

  • Schroeder D (1979) Structure and weathering of potassium containing minerals. Proc Cong Int Pot Inst 11:43–63

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Song SK, Huang PM (1988) Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J 52:383–390

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. Am Soc Agron J, Madison, pp 201–276

    Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Supanjani HHS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induced the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. Plant Biol 10:172

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Valmorbida J, Boaro CSF (2007) Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 50:379–384

    Article  CAS  Google Scholar 

  • White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs, vol 17. Springer, Berlin, pp 199–224

    Chapter  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 77:7569, http://dx.doi.org/10.1080/03650340.2012

    Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Google Scholar 

  • Zhao F, Sheng X, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • Zhou Hong BO, Zheng Xiao XI, Fei-Fei L, Guan-Zhou Q, HuYue H (2006) Screening, identification and desiccation of silicate bacterium. J Cent South Univ Techol 13:337–341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Yadav, B.K., Sidhu, A.S. (2016). Dynamics of Potassium and Their Bioavailability for Plant Nutrition. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_14

Download citation

Publish with us

Policies and ethics