Skip to main content
Log in

Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The present greenhouse study was undertaken to evaluate the effects of co-inoculating the ectomycorrhizal (ECM) fungus Boletus edulis with the mycorrhiza helper bacterium Bacillus cereus HB12 or HB59 on the growth and nutrient uptake of Pinus thunbergii. The inoculation with mycorrhiza helper bacterium significantly (P ≤ 0.05) increased the ectomycorrhizal colonization. Treatments with dual inoculum (the mycorrhiza helper bacterium plus mycorrhiza) significantly (P ≤ 0.05) increased the P. thunbergii growth. Bacteria–mycorrhizae interactions resulted in a great utilization of phosphate and potassium. The single inoculation resulted in a higher root activity than the control while the co-inoculation led to the highest root activity. The 6-CFDA staining assay showed that B. cereus enhanced fungal activity in ectomycorrhizal symbiosis. The results conclusively suggest that B. cereus isolated from the rhizosphere of P. thunbergii can potentially be used as individual inoculant or co-inoculated with ECM fungi to increase the production in sustainable ecological systems. These results support the potential use of B. cereus (HB12 or HB59) and B. edulis as mixed inoculants stimulating growth of P. thunbergii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bending D, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227

    PubMed  CAS  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Brulé C, Frey-Klett P, Pierrat JC, Courrier S, Gérard F, Lemoine MC, Rousselet JL, Sommer G, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694

    Article  Google Scholar 

  • De Oliveira VL, Garbaye J (1989) Les microorganismes auxiliaires de l'etablissement des symbioses ectomycorrhiziennes. Eur J For Pathol 19:54–64

    Article  Google Scholar 

  • Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755

    Article  PubMed  CAS  Google Scholar 

  • Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant Soil 138:169–176

    Article  Google Scholar 

  • Duponnois R, Kisa M (2006) The possible role of trehalose in the mycorrhiza helper effect. Can J Bot 84:1005–1008

    Article  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Accacia holoserica with the Pisolithus albus. New Phytol 153:81–89

    Article  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbio 163:139–144

    Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorhizospere. Experientia 47:370–375

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to themycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • Han GX, Zhang ZM, Wang GM, Mao PL, Su SJ, Xu QZ (2009) Growth dynamics and quantitative population characteristics of young trees in coastal Pinus thunbergii windbreak forest in northern Shandong Peninsula. Chin J Ecol 28:1013–1020

    Google Scholar 

  • Hyde GJ, Ashford AE (1997) Vacuole motility and tubule-forming activity in Pisolithus tinctorius hyphae are modified by environmental conditions. Protoplasma 198:85–92

    Article  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds. Biol Fertil Soils 46:199–214

    Article  CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice-Hall of India Pvt. Ltd., New Delhi, India

    Google Scholar 

  • Kataoka R, Futai K (2008) A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol Fertil 45:315–320

    Article  Google Scholar 

  • Maier A, Riedlinger J, Fiedler HP, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Prog 18:185–190

    Google Scholar 

  • Mcpartland JM, Robert CC, Watson DP (2000) Hemp diseases and pests: management and biological control: an advanced treatise. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Minorsky PV (2004) On the inside. Plant Physiol 134(3):881–882

    Article  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2005) Erratum: mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 83:905–912

    Article  Google Scholar 

  • Ryan J, Garabet S, Harmsen K, Rashid A (1996) A soil and plant analysis manual adapted for the West Asia and North Africa Region. ICARDA, Allepo, Syria

    Google Scholar 

  • Schrey S, Schellhammer M, Ecke M, Hampp R, Tarkka M (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li JP, Barbara A, Moffatt GBR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can J Microbiol 44(9):833–843

    Article  PubMed  CAS  Google Scholar 

  • Sheng JM, Wu XQ, Hou LL, Ying CX (2010) Isolation and identification of a MHB strain from the rhizosphere soil of Pinus thunbergi inoculated with Boletus edulis. Chin J Appl Environ Biol 16:701–704

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, New York

    Google Scholar 

  • Stūrīte I, Henriksen TM, Breland TA (2005) Distinguishing between metabolically active and inactive roots by combined staining with 2, 3, 5-triphenyltetrazolium chloride and image colour analysis. Plant Soil 271:75–82

    Article  Google Scholar 

  • Sun MQ, Wu XQ, Ye JR (2007) Effects of ectomycorrhizal fungi on germination and growth of pines. Journal of Nanjing Forestry University (Natural Sciences Edition) 31:39–43

    CAS  Google Scholar 

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:381–383

    Article  PubMed  CAS  Google Scholar 

  • Wang CX, Knill E, Bernard RG, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Watanabe FS, Olsen S (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extract for soil. Soil Sci 21:677–678

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations formycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Zheng L, Wu XQ (2008) Morphology and activity of ectomycorrhizal fungi in vitro and in symbiont with pinus thunbergii. Journal of Plant Ecology (Chinese Version) 32:932–937

    Google Scholar 

  • Zhu JJ, Li FQ, Takeshi M, Yutaka G (2002) Influence of thinning on regeneration in a costal Pinus thunbergii forest. Chin J Appl Ecol 13:1361–1367

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by Chinese Special Fund Project for the Scientific Research of the Forest Public Welfare Industry (201004061) and A Project founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XQ., Hou, LL., Sheng, JM. et al. Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii . Biol Fertil Soils 48, 385–391 (2012). https://doi.org/10.1007/s00374-011-0638-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0638-1

Keywords

Navigation