Skip to main content

Mycorrhizal Fungi: Role in the Solubilization of Potassium

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Mycorrhizae have been key living microorganisms in the plant colonization of terrestrial environments. The crucial roles of mycorrhizae are to provide plant nutrition and stress resistance for plant growth and development. Potassium (K+) shows important functions in different metabolic processes and physiological functions and is the third crucial component of most crop fertilizers (after nitrogen and phosphorus). This chapter discusses the current state of knowledge about the role of mycorrhizal symbiosis in the release, solubilization, and transport of potassium from the soil to plants. Improved metagenomic analyses and the availability of transcriptome data provide promising tools for studying fungal weathering and the mycorrhizal contributions to K+ solubilization and K+ transport to plants. Additionally, some benefits of mycorrhizal potassium uptake in plants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2010) Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microbiol Biotechnol 26:1901–1913

    Article  CAS  Google Scholar 

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22:535–544

    Article  CAS  PubMed  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8:41–45

    Article  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Alves L, Oliveira VL, Filho GNS (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Braz J Microbiol 41:676–684

    Article  CAS  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  CAS  Google Scholar 

  • Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a luvisol. Can J Soil Sci 79:25–35

    Article  CAS  Google Scholar 

  • Arocena JM, Göttlein A, Raidl S (2004) Spatial changes of soil solution and mineral composition in the rhizosphere of Norway-spruce seedlings colonized by Piloderma croceum. J Plant Nutr Soil Sci 167:479–486

    Article  CAS  Google Scholar 

  • Asher CJ, Ozanne PG (1967) Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci 103:155–161

    Article  CAS  Google Scholar 

  • Ashford AE, Vesk PA, Orlovich DA, Markovina AL, Allaway WG (1999) Dispersed polyphosphate in fungal vacuoles in Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas. Fungal Genet Biol 28:21–33

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Baeza A, Guillen J, Hernandez S, Salas A, Bernedo M, Manjon JL, Moreno G (2005) Influence of the nutritional mechanism of fungi (mycorrhize/saprophyte) on the uptake of radionuclides by mycelium. Radiochim Acta 93:233–238

    Article  CAS  Google Scholar 

  • Balogh-Brunstad Z, Kent Keller C, Thomas Dickinson J, Stevens F, Li CY, Bormann BT (2008) Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid culture experiments. Geochim Cosmochim Acta 72:2601–2618

    Article  CAS  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci U S A 96:3404–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bañuelos MA, Klein RD, Alexander-Bowman SJ, Rodríguez-Navarro A (1995) A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J 14:3021–3027

    PubMed  PubMed Central  Google Scholar 

  • Bañuelos MA, Madrid R, Rodríguez-Navarro A (2000) Individual functions of the Hak and Trk potassium transporters of Schwanniomyces occidentalis. Mol Microbiol 37:671–679

    Article  PubMed  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013) The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic 164:145–154

    Article  CAS  Google Scholar 

  • Beauchamp VB, Stromberg JC, Stutz JC (2006) Arbuscular mycorrhizal fungi associated with Populus–Salix stands in a semiarid riparian ecosystem. New Phytol 170(2):369–380

    Article  PubMed  Google Scholar 

  • Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol 130:411–417

    Article  CAS  Google Scholar 

  • Benito B, González-Guerrero M (2014) Unravelling potassium nutrition in ectomycorrhizal associations. New Phytol 201:707–709

    Article  CAS  PubMed  Google Scholar 

  • Benito B, Garciadeblas B, Rodríguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148:933–941

    Article  CAS  PubMed  Google Scholar 

  • Benito B, Garciadeblas B, Schreier P, Rodríguez-Navarro A (2004) Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3(2):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito B, Garciadeblas B, Fraile-Escanciano A, Rodríguez-Navarro A (2011) Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genet Biol 48:812–822

    Article  CAS  PubMed  Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in Plants. J Plant Physiol 171:723–732

    Article  CAS  PubMed  Google Scholar 

  • Boomsma C, Vyn T (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crop Res 108:14–31

    Article  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  • Bowen GD (1973) Mineral nutrition of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic, New York, pp 151–205

    Google Scholar 

  • Brandes B, Godbold DL, Kuhn AJ, Jentschke G (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytol 140:735–743

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ (2005) Plant nutritional genomics. Blackwell Publishing, CRC Press, Oxford

    Google Scholar 

  • Brunner I, Frey B, Riesen TK (1996) Influence of ectomycorrhization and cesium/potassium ratio on uptake and localization of cesium in Norway spruce seedlings. Tree Physiol 16:705–711

    Article  PubMed  Google Scholar 

  • Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi–an X-ray microanalytical study. Mycol Res 103:31–39

    Article  Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    Article  CAS  Google Scholar 

  • Callot G, Maurette M, Pottier L, Dubois A (1987) Biogenic etching of microfractures in amorphous and crystalline silicates. Nature 328:147–149

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault M, Uroz S, Leclerc E, Kies A, Frey-Klett P (2009) Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering. Plant Soil 328:1–521

    Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L et al (2013) Biotrophic transportome in mutualistic plant fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Cheah S-F, Kraemer SM, Cervini-Silva J, Sposito G (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem Geol 198:63–75

    Article  CAS  Google Scholar 

  • Cimen I, Pirinc V, Doran I, Turgay B (2010) Effect of soil solarization and arbuscular mycorrhizal fungus (Glomus intraradices) on yield and blossom-end rot of tomato. Int J Agric Biol 12:551–555

    Google Scholar 

  • Clark RB, Zeto SK (1996) Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1505–1511

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolate on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176

    Article  CAS  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  PubMed  CAS  Google Scholar 

  • Coskun D, Britto DT, Kronzucker HJ (2014) The physiology of channel- mediated K+ acquisition in roots of higher plants. Physiol Plant 151:305–312

    Article  CAS  PubMed  Google Scholar 

  • Cromack K Jr, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulations and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468

    Article  CAS  Google Scholar 

  • Cumming JR (1993) Growth and nutrition of non mycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings under phosphorus limitation. Tree Physiol 13:173–187

    Article  CAS  PubMed  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Danielsen L, Polle A (2014) Poplar nutrition under drought as affected by ectomycorrhizal colonization. Environ Exp Bot 108:89–98

    Article  CAS  Google Scholar 

  • de Souza FSJ, Gomes SL (1998) A P-type ATPase from the aquatic fungus Blastocladiella emersonii similar to animal Na, K-ATPases. Biochim Biophys Acta 1383:183–187

    Article  PubMed  Google Scholar 

  • Delvasto P, Ballester A, Muñóz JA, González F, Blazquez ML, Igual JM, Valverde A, García-Balboa C (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22:1–9

    Article  CAS  Google Scholar 

  • Delvaux B, Kruyts N, Maes E, Smolders E (2001) Fate of radiocesium in soil and rhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, BocaRaton, pp 61–91

    Google Scholar 

  • Domínguez JA, Selva J, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manag 231:226–233

    Article  Google Scholar 

  • Domínguez JA, Planelles R, Rodríguez Barreal JA, Saiz de Omeñaca (2008) The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings. New For 35:159–171

    Article  Google Scholar 

  • Domínguez Núñez JA, Planelles González R, Rodríguez Barreal JA, Saiz de Omeñaca González JA (2009) Influence of water-stress acclimation and Tuber melanosporum mycorrhization on Quercus ilex seedlings. Agrofor Syst 75(3):251–259

    Article  Google Scholar 

  • Dominguez JA, Martin A, Anriquez A, Albanesi A (2012) The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22(6):429–436

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Nuñez JA, Saiz M, Calderon C, Saiz de Omeñaca JA (2013) Short communication. Physiological effects of Rhizopogon Roseolus on Pinus halepensis seedlings. For Syst 22(3):568–572

    Google Scholar 

  • Domínguez-Núñez JA, Muñóz D, de la Cruz A, Saiz de Omeñaca JA (2013) Effects of Pseudomonas fluorescens on the water parameters of mycorrhizal and non-mycorrhizal seedlings of Pinus halepensis. Agronomy 3:571–582

    Article  Google Scholar 

  • Dominguez-Nuñez JA, Medina M, Berrocal-Lobo M, Anriquez A, Albanesi A (2015) The combined effects of Pseudomonas fluorescens CECT 844 and the black truffle co-inoculation on Pinus nigra seedlings. iForest – Biogeosciences and Forestry. (On-line. doi:10.3832/ifor1334-007)

    Google Scholar 

  • Drew MC, Nye PH (1969) The supply of nutrient ions by diffusion to plant roots in soil. II. The effect of root hairs on the uptake of potassium by roots of ryegrass (Lolium multiflorum). Plant Soil 31:407–424

    Article  CAS  Google Scholar 

  • Dreyer I, Uozumi N (2011) Potassium channels in plant cells. FEBS J 278:4293–4303

    Article  CAS  PubMed  Google Scholar 

  • Dupré de Boulois H, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. J Environ Radioact 99:785–800

    Article  PubMed  CAS  Google Scholar 

  • El-Mesbahi MN, Azcón R, Ruiz-Lozano JM, Aroca R (2012) Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza 22:555–564

    Article  CAS  PubMed  Google Scholar 

  • Ericsson T (1995) Growth and shoot–root ratio of seedlings in relation to nutrient availability. Plant Soil 168:205–214

    Article  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Fietto LG, Pugliese L, Gomes SL (2002) Characterization and expression of two genes encoding isoforms of a putative Na, K-ATPase in the chytridiomycete Blastocladiella emersonii. Biochim Biophys Acta 1576:59–69

    Article  CAS  PubMed  Google Scholar 

  • Fogel R, Hunt G (1983) Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can J For Res 13:219–232

    Article  CAS  Google Scholar 

  • Futai K, Taniguchi T, Kataoka R (2008) Ectomycorrhizae and their importance in forest ecosystems. In: Siddiqui A, Futai (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Science + Business Media B.V, Netherlands. pp 241–285

    Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  PubMed  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201:951–960

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants – involvement in K1 acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, maybe partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Glowa KR, Arocen JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Gomez-Porras JL, Riaño-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  CAS  PubMed  Google Scholar 

  • Gyuricza V, Declerck S, Dupré de Boulois H (2010a) Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula. J Environ Radioact 101:591–596

    Article  CAS  PubMed  Google Scholar 

  • Gyuricza V, Dupré de Boulois H, Declerck S (2010b) Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi. J Environ Radioact 101:482–487

    Article  CAS  PubMed  Google Scholar 

  • Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290

    Article  CAS  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  PubMed  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hawkes CV, Casper BB (2002) Lateral root function and root overlap among mycorrhizal and nonmycorrhizal herbs in a Florida shrub land, measured using rubidium as a nutrient analog. Am J Bot 89:1289–1294

    Article  PubMed  Google Scholar 

  • Hawkins B, Boukcim H, Plassard C (2008) A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Plant Cell Environ 31:278–287

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Brauman A, Devau N, Gérard F, Jourdan C, Laclau CP, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61

    Article  CAS  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655

    Article  CAS  Google Scholar 

  • Hoffland E, Giesler R, Jongmans T, Van Breemen N (2002) Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems 5:11–22

    Article  Google Scholar 

  • Huang JG, Lapeyrie F (1996) Ability of ectomycorrhizal fungus Laccaria bicolor S238N to increase the growth of Douglas fir seedlings and their phosphorus and potassium uptake. Pedosphere 6:217–224

    CAS  Google Scholar 

  • Jain N, Sharma D (2004) Biohydrometallurgy for nonsulfidic minerals-a review. Geomicrobiol J 21:135–144

    Article  CAS  Google Scholar 

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    Article  CAS  PubMed  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Becker JS, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246

    Article  CAS  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL (2001) Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytol 149:327–337

    Article  CAS  Google Scholar 

  • Johansson SAE, Campbell JL (1988) PIXE, a novel technique for elemental analysis. Wiley, Chichester

    Google Scholar 

  • Joner EJ, Roos P, Jansa J, Frossard E, Leyval C, Jakobsen I (2004) No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Appl Environ Microbiol 70:6512–6517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Jongbloed RH, Clement JMAM, Borst-Pauwels GWFH (1991) Kinetics of NH+ 4 and K+ uptake by ectomycorrhizal fungi. Effect of NH+ 4 on K+ uptake. Physiol Plant 83:427–432

    Article  CAS  Google Scholar 

  • Jourand P, Hannibal L, Majorel C, Mengant S, Ducousso M, Lebrun M (2014) Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. J Plant Physiol 171:164–172

    Article  CAS  PubMed  Google Scholar 

  • Jung NC, Tamai Y (2013) Polyphosphate (phytate) formation in Quercus acutissima-Scleroderma verrucosum ectomycorrhizae supplied with phosphate. J Plant Interact 8:291–303

    Article  CAS  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Soil factors in relation to distribution and occurrence of vesicular arbuscular mycorrhiza. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer Academic Publishers, Boston, pp 51–85

    Chapter  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SAN (1995) A new family of outwardly rectifying potassium channel proteins with 2 pore domains in tandem. Nature 376:690–695

    Article  CAS  PubMed  Google Scholar 

  • Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Ladeyn I, Plassard C, Staunton S (2008) Mycorrhizal association of maritime pine, Pinus pinaster, with Rhizopogon roseolus has contrasting effects on the uptake from soil and root-to-shoot transfer of 137Cs, 85Sr and 95mTc. J Environ Radioact 99:853–863

    Article  CAS  PubMed  Google Scholar 

  • Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C et al (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505–513

    Article  CAS  Google Scholar 

  • Landmann G, Hunter IR, Hendershot W (1997) Temporal and spatial development of magnesium deficiency in forest stands in Europe, North America and New Zealand. In: Hüttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch. Ex Fr.) Fr. New Phytol 106:139–146

    Article  CAS  Google Scholar 

  • Leigh RA, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata-Agrobacterium radiobacter and beech roots influence on phosphorus, potassium, magnesium and iron mobilisation from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016

    Article  CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • López MF, Dietz S, Grunze N, Bloschies J, Weiss M, Nehls U (2008) The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. New Phytol 180:365–378

    Article  PubMed  CAS  Google Scholar 

  • Malcova R, Albrechtova J, Vosatka M (2001) The role of the extraradical mycelium network of arbuscular mycorrhizal fungi on the establishment and growth of Calamagrostis epigejos in industrial waste substrates. Appl Soil Ecol 18:129–142

    Article  Google Scholar 

  • Manning D (2010) Mineral sources of potassium for plant nutrition. A review. Agron Sustain Dev 30:281–294

    Article  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  CAS  PubMed  Google Scholar 

  • Markewitz D, Richter DD (2000) Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. For Ecol Manag 130:109–129

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martin F, Díez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol 153:345–357

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Article  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability inagricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Google Scholar 

  • Miransari M (2012a) Soil microbes and environmental health. Nova Publishers, Hauppauge

    Google Scholar 

  • Miransari M (2012b) Soil nutrients. Nova Publishers, Hauppauge

    Google Scholar 

  • Miransari M (2013) Arbuscular mycorrhizal fungi and uptake of nutrients. In: Aroca R (ed) Symbiotic endophytes, vol 37. Springer, Berlin, pp 253–270

    Chapter  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res 104:48–55

    Article  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and paralleles in other organisms. J Plant Physiol 171:688–695

    Article  CAS  PubMed  Google Scholar 

  • Ochs M (1996) Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol 132:119–124

    Article  CAS  Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    Article  CAS  Google Scholar 

  • Olsson PA, Hammer EC, Wallander H, Pallon J (2008) Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microbiol 74:4144–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson PA, Hammer EC, Pallon J, van Aarle IM, Wallander H (2011) Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol 115:643–648

    Article  CAS  PubMed  Google Scholar 

  • Orlovich DA, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173:91–102

    Article  CAS  Google Scholar 

  • Pallon J, Wallander H, Hammer E, Arteaga Marrero N, Auzelyte V, Elfman M et al (2007) Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nucl Inst Methods Phys Res B 260:149–152

    Article  CAS  Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of the genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    Article  CAS  PubMed  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995a) In vitro weathering of phlogopite by ectomycorrhizal fungi, I. Effects of K+ and Mg+ deficiency on phyllosilicate evolution. Plant Soil 177:191–201

    Article  CAS  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Robert M, Lapeyrie F (1995b) Weathering of ammonium- or calcium-saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biol Biochem 27:1237–1244

    Article  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi.2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mäder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Plassard C, Guerin Laguette A, Véry AA, Casarin V, Thibaud JB (2002) Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant Cell Environ 25:75–84

    Article  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, andoxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 66:1350–1359

    Article  CAS  Google Scholar 

  • Rabie GG, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    Article  PubMed  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Rosling A (2009) Trees, mycorrhiza and minerals field relevance of In vitro experiments. Geomicrobiol J 26:389–401

    Article  CAS  Google Scholar 

  • Rosling A, Lindahl BD, Finlay RD (2004a) Carbon allocation to ectomycorrhizal roots and mycelium colonizing different mineral substrates. New Phytol 162:795–802

    Article  Google Scholar 

  • Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004b) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37

    Article  CAS  PubMed  Google Scholar 

  • Rygiewicz PT, Bledsoe CS (1984) Mycorrhizal effects on potassium fluxes by northwest coniferous seedlings. Plant Physiol 76:918–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soy bean after inoculation with pre-treated mycorrhizal fungi. J. Plant Physiol 164:1144–1151

    Article  CAS  Google Scholar 

  • Shin R, Adams E (2014) Transport, signaling and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56:231–249

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith SE, Smith FA, Nicholas DJD (1981) Effects of endomcorrhizal infection on phosphate and cation uptake by Trifolium subterraneum. Plant Soil 63:57–64

    Article  CAS  Google Scholar 

  • Smits MM (2005) Ectomycorrhizal fungi and biogeochemical cycles of boreal forests. PhD thesis, Wageningen University. www.library.wur.nl/wda/dissertations

  • Tamponnet C, Martin-Garin A, Gonze MA, Parekh N, Vallejo R, Sauras-Year T et al (2008) An overview of BORIS: bioavailability of radionuclides in soils. J Environ Radioact 99:820–830

    Article  CAS  PubMed  Google Scholar 

  • Terada H, Shibata H, Kato F, Sugiyama H (1998) Influence of alkali elements on the accumulation of radiocesium by mushrooms. J Radioanal Nucl Chem 235:195–200

    Article  CAS  Google Scholar 

  • Thelin G (2000) Nutrient imbalance in Norway spruce. Ph.D. thesis, Lund University

    Google Scholar 

  • Turnau K, Berger A, Loewe A, Einig W, Hampp R, Chalot M et al (2001) Carbon dioxide concentration and nitrogen input affect the C and N storage pools in Amanita muscaria-Picea abies mycorrhizae. Tree Physiol 21:93–99

    Article  CAS  PubMed  Google Scholar 

  • Übel E, Heinsdorf D (1997) Results of long-term K and Mg fertilizer experiments in afforestation. For Ecol Manag 91:47–52

    Article  Google Scholar 

  • van Breemen N, Lundström US, Jongmans AG (2000) Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94:163–171

    Article  Google Scholar 

  • van Hees PAW, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD (2006a) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367–378

    Article  PubMed  CAS  Google Scholar 

  • van Hees PAW, Rosling A, Finlay RD (2006b) The impact of trees, ectomycorrhiza and potassium availability on simple organic compounds and dissolved organic carbon in soil. Soil Biol Biochem 38:1912–1923

    Article  CAS  Google Scholar 

  • van Hees PAW, Rosling A, Lundström US, Finlay RD (2006c) The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma 136:364–377

    Article  CAS  Google Scholar 

  • van Schöll L, Hoffland E, van Breemen N (2006a) Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol 170:153–163

    Article  PubMed  CAS  Google Scholar 

  • van Schöll L, Smits MM, Hoffland E (2006b) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    Article  PubMed  CAS  Google Scholar 

  • van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen R (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  CAS  Google Scholar 

  • Vasan SS, Modak JM, Natarajan KA (2001) Some recent advances in the bioprocessing of bauxite. Int J Miner Process 62:173–186

    Article  CAS  Google Scholar 

  • Veresoglou SD, Mamolos AP, Thornton B, Voulgari OK, Sen R, Veresoglou S (2011) Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant Soil 344:187–196

    Article  CAS  Google Scholar 

  • Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    Article  PubMed  Google Scholar 

  • Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  • Wallander H (2000a) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Wallander H (2000b) Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil 222:215–229

    Article  CAS  Google Scholar 

  • Wallander H, Hagerberg D (2004) Do ectomycorrhizal fungi have a significant role in weathering of minerals in forest soil? Symbiosis 27:249–257

    Google Scholar 

  • Wallander H, Pallon J (2005) Temporal changes in the elemental composition of Rhizopogon rhizomorphs during colonization of patches with fresh organic matter or acid-washed sand. Mycologia 97:295–303

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Wallander H, Johansson L, Pallon J (2002) PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiol Ecol 39:147–156

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65

    CAS  PubMed  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:4.1–4.26

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Wu FY, Bi YL, Wong MH (2009) Dual inoculation with an arbuscular mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates. J Plant Nutr 32:755–771

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y (1998) Concentrations of alkali and alkaline earth elements in mushrooms and plants collected in a Japanese pine forest, and their relationship with 137Cs. J Environ Radioact 41:183–205

    Article  CAS  Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA, Rejali F, Nadian NH (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15(9):1310–1318

    CAS  Google Scholar 

  • Yuan L, Fang DH, Wang ZH, Shun H, Huang JG (2000) Bio-mobilization of potassium from clay minerals: I. By ectomycorrhizas. Pedosphere 10:339–346

    Google Scholar 

  • Yuan L, Huang J, Li X, Christie P (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361

    Article  CAS  Google Scholar 

  • Zaefarian F, Rezvani M, Rejali F, Ardakani MR, Noormohammadi G (2011) Effect of heavy metals and arbuscular mycorrhizal fungal on growth and nutrients (N, P, K, Zn, Cu and Fe) accumulation of alfalfa (Medicago sativa L.). Am Eurasian J Agric Environ 11:346–352

    CAS  Google Scholar 

  • Zhang H, Yin W, Xia X (2010) Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K+ stress. Plant Cell Rep 29:1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture-status and perspectives. J Plant Physiol 171:656–669

    Article  PubMed  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Alfonso Dominguez-Nuñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Dominguez-Nuñez, J.A., Benito, B., Berrocal-Lobo, M., Albanesi, A. (2016). Mycorrhizal Fungi: Role in the Solubilization of Potassium. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_6

Download citation

Publish with us

Policies and ethics