Skip to main content

The Molecular Mechanisms of KSMs for Enhancement of Crop Production Under Organic Farming

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

The continuous use of chemical fertilizers and pesticides for the enhancement of crop yield and instant action of pest control causes harmful and hazardous effect on the environment due to the accumulation of minerals and biomagnifications at higher hierarchical level. Therefore, the current need is alternative and eco-friendly technology as integrated pest management (IPM) and plant growth-promoting microorganisms (PGPMs) for enhancing organic farming practices. One of the promising microorganisms is potassium-solubilizing microorganisms (KSMs) as PGPMs are applicable for sustainable agriculture. Plant growth promotion (PGP) is a complex phenomenon rarely attributable to a single mechanism as most PGP microbes influence plant growth through multiple mechanisms. However, any microbial agent added to the rhizosphere has to interact not only with the plant but also with other organisms around the microenvironment. The KSMs have the ability for IAA production, K solubilization, antifungal, HCN, and siderophore production. Due to secretion of organic acids, KSMs solubilize various forms of K in soil to available forms which helps enhance plant growth, yield, and fertility status of soil. This book chapter is a critical summary of the efforts of scientist in efficient use of KSMs, mechanism of K solubilization, and use of these microorganisms for increasing the crop production. They also help plant to combat against pathogenic microbes and other environmental stresses. The indigenous microbes proven their effectiveness; such microbes suit the environmental conditions in the cropping system for which they are intended. This chapter covers the studies of KSMs, their sources, mechanism of K solubilization, and their effect on crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Live IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Microchem J 29:111–114

    CAS  Google Scholar 

  • Altamare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and bacterial fungus Trichodera harzianum Rifai. Appl Environ Microbiol 65:2926–2933

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeo Chem 19:129–147

    Google Scholar 

  • Avakyan ZA, Karavaiko GI, Mel’nikova EO, Krutsko VS, Ostroushhko YI (1981) Role of microscopic fungi in weathering of rocks from a pegmatite deposit. Mikrobiologiya 50:115–120

    Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Coinoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Belkanova NP, Karavajko GI, Avakyan ZA (1985) Cleavage of the siloxane bond in quartz by Bacillus mucilaginosus. Mikrobiologiya 54:27–30

    CAS  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manag 8(6):149–150

    Article  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publications, Boston, pp 223–262

    Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperature region soils. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA and SSSP, Madison, pp 131–162

    Google Scholar 

  • Brouder SM, Volenec JJ (2008) Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant 133:705–724

    Article  CAS  PubMed  Google Scholar 

  • Bunt JS, Rovira AD (1955) Microbiological studies of some sub Antarctic soils. J Soil Sci 6:119–128

    Article  CAS  Google Scholar 

  • Chandra K, Greep S, Ravindranath P, Sivathsa RSH (2005) Liquid biofertilizers. Regional Center for Organic Farming, Hebbal, Bangalore Chem Ind 44:1376–1377

    Google Scholar 

  • Chen YX, Lin Q, Lu F, He YF (2000) Study on detoxication of organic acid to radish under the stress of Pb and Cd. Acta Sci Circumstance 20:467–472

    CAS  Google Scholar 

  • Christophe C, Turpault MP, Freyklett P (2006) Root associated bacteria contribute to mineral weathering and to mineral nutrition in trees and budgeting analysis. Appl Environ Microbiol 72:258–1266

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Ciobanu I (1961) Investigation on the efficiency of bacterial fertilizers applied to cotton. Cent Exp Ingras Bacteria Lucrari Stiint 3:203–214

    Google Scholar 

  • Claassen N, Steingrobe B (1999) Mechanistic simulation models for a better understanding of nutrient uptake from soil. In: Rengel Z (ed) Mineral nutrition of crops. Fundamental mechanisms and implications. Haworth Press, New York, pp 327–367

    Google Scholar 

  • Deng SB, Bai RB, Hu XM, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol 60:588–593

    Article  CAS  PubMed  Google Scholar 

  • Duff RB, Webley DM (1959) 2-ketoglutaric acid and natural chelator produced by soil bacteria. Chem Ind 44:1376–1377

    Google Scholar 

  • Duff RB, Webley DM, Scott RO (1963) Solubilization of minerals and related materials by 2- ketogluconic acid producing bacteria. Soil Sci 5:105–114

    Article  Google Scholar 

  • El Dessougi H, Claassen N, Steingrobe B (2002) Potassium efficiency mechanisms of wheat, barley, and sugar beet grown on a K fixing soil under controlled conditions. J Plant Nutr Soil Sci 165:732–737

    Article  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by Gram negative bacteria. In: Torriani-Gorni A, Yagil E, Silver E (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington, DC, pp 197–203

    Google Scholar 

  • Gromov BV (1957) The microflora of rocks and primitive soil in some northern regions of the USSR. Microbiologia 26:52–54

    CAS  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani E, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hazen TC, Jimenez L, Victoria GL (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbiol Ecol 22:293–304

    Article  CAS  Google Scholar 

  • Heinen W (1960) Silicon metabolism in microorganisms. Arch Microbiol 37:199–210

    CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534

    Article  CAS  Google Scholar 

  • Holmes R (2011) Humphry Davy and the chemical moment. Clin Chem 57(11):1625–1631

    Article  CAS  Google Scholar 

  • Hopkins W (1995) Introduction to plant physiology. Wiley, INS, New York, pp 414–415

    Google Scholar 

  • Hosseinpur AR, Motaghian HR, Salehi MH (2012) Potassium release kinetics and its correlation with pinto bean (Phaseolus vulgaris) plant indices. Plant Soil Environ 58:328–333

    CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Hutchen SE, Valsami JE, Eldowney MS (2003) The role of heterotrophic bacteria in feldspar dissolution. Mineral Manag 67:1151–1170

    Google Scholar 

  • Johnston AE (2005) Understanding potassium and its use in agriculture. EFMA, Brussels

    Google Scholar 

  • Kannan NM, Raj SA (1998) Occurrence of silicate solubilizing bacteria in rice ecosystem. Madras Agric J 85:47–50

    Google Scholar 

  • Khudsen D, Peterson GA, Prov PF (1982) Lithium, sodium and potassium. In: Page AL (ed) Methods of soil analysis, part (2) agronomy monograph 9, 2nd edn. ASA and SSSA, Madison

    Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Li YF (1994) The characteristics and function of silicate dissolving bacteria fertilizer. Soil Fertil 2:48–49

    Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sinica 22:179

    CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu GY (2001) Screening of silicate bacteria with potassium releasing and antagonistic activity. Chin J Appl Environ Biol 7:66–68

    CAS  Google Scholar 

  • Liu W, Xu X, Wu S, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiologiya 59:49–55

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. Internl Potash Inst Bern, Worblaufen-Bern, pp 200–210

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Acad. Publishers, Dordrecht, p 849

    Book  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latvian J Agron 8:154–157

    Google Scholar 

  • Moira EK, Henderson MEK, Duff RB (1963) The release of metallic and silicate ions from minerals, rocks and soils by fungal activity. J Soil Sci 14:237–245

    Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Murali G, Gupta A, Nair RV (2005) Variations in hosting beneficial plant associated microorganisms by root (wilt) diseased and field tolerant coconut palms of west coast tall variety. Curr Sci 89:1922–1927

    Google Scholar 

  • Muralikannan M (1996) Biodissolution of silicate, phosphate and potassium by silicate solubilizing bacteria in rice ecosystem. M.Sc. (Agric) thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Nayak B (2001) Uptake of potash by different plants with the use of potash mobilizing bacteria (Frateuria aurantia). M.Sc. (Agric) thesis, QUAT, Bhubaneswar

    Google Scholar 

  • Norkina SP, Pumpyansakya LV (1956) Certain properties of silicate bacteria. Crop Sci Soc Jpn 28:35–40

    Google Scholar 

  • Oborn I, Andrist-Rangel Y, Askekaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manag 21:102–112

    Article  Google Scholar 

  • Palmer RJJ, Siebert J, Hirsch PR (1991) Biomass and organic acids in sandstone of a weathered building production by bacterial and fungal isolates. Microbiol Ecol 21:253–261

    Article  CAS  Google Scholar 

  • Park M, Singvilay O, Seok Y, Chung J, Ahn K, Sa T (2003) Effect of phosphate solubilizing fungi on P uptake and growth to tobacco in rock phosphate applied soil. Korean J Soil Sci Fertil 36:233–238

    CAS  Google Scholar 

  • Parmar P (2010) Isolation of potassium solubilizing bacteria and their inoculation effect on growth of wheat (Triticum aestivum L. em. Thell.). M.Sc. thesis submitted to CCS Haryana Agricultural University, Hisar

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leafl 5:71–75

    Google Scholar 

  • Pretty KM, Stangel PJ (1985) Current and future use of world potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 99–128

    Google Scholar 

  • Purushothaman A, Chandramohan D, Natarajan R (1974) Distribution of silicate dissolving bacteria in velar estuary. Curr Sci 43:282–283

    Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj SA (2004) Solubilization on a silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Biofertilizer technology for rice based cropping system. Scientific Publishers, Jodhpur, pp 372–378

    Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rock for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Reitmeir RF (1951) Soil potassium. In: Norman AG (ed) Advances in agronomy, vol III, American Society of Agronomy. Academic, New York, pp 113–164

    Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636

    Article  CAS  PubMed  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  CAS  Google Scholar 

  • Rus A, Lee B, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider A, Tesileanu R, Charles R, Sinaj S (2013) Kinetics of soil potassium sorption desorption and fixation. Commun Soil Sci Plant Anal 44:837–849

    Article  CAS  Google Scholar 

  • Shehata MM, El-Khawas SA (2003) Effect of two biofertilizers on growth parameters, yield characters, nitrogenous components, nucleic acid contents, minerals, oil content, protein profiles and DNA banding pattern of sunflower (Helianthus annus L. cv. Vedock) yield. Pak J Biol Sci 6(14):1257–1268

    Article  Google Scholar 

  • Shen D (1997) Microbial diversity and application of microbial products for agricultural purposes in China. Agric Ecosyst Environ 62:237–245

    Article  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002a) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, Huang WY (2002b) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng X, He L, Huang W (2001) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1(6):662–666

    Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions for releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:400–412

    Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    Article  CAS  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien, New York, pp 95–235

    Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence Of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J Gen Physiol 113:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985a) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. Soil Sci Soc. Am, Madison, pp 201–276

    Google Scholar 

  • Sparks DL, Huang PM (1985b) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 201–276

    Google Scholar 

  • Styriakova I, Styriak I, Galko I, Hradil D, Bezdicka P (2003) The release of iron bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceram Silicaty 47:20–26

    CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3(3):350–355

    Google Scholar 

  • Supanjani HHS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Surdam RC, MacGowan DB (1988) Oil field waters and sandstone diagenesis. Appl Geo Chem 2:613–620

    Google Scholar 

  • Syers JK (1998) Soil and plant potassium in agriculture. The Fertiliser Society, York

    Google Scholar 

  • Tandon HLS, Sekhon GS (1988) Potassium research and agricultural production in India. Fertilizer Development and Consultation Organization, New Delhi, p 144

    Google Scholar 

  • Ullman WJ, Welch SA (2002) Organic ligands and feldspar dissolution. Geochem Soc 7:3–35

    CAS  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Vainberg SN, Vlasov AS, Skripnik VP (1980) Enrichment of clay raw material using silicate bacteria. USSR Tr Mosk Khim Tekhnol Inst Im DI Mendeleeva 116:34–37

    CAS  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DJ (1994) Enhanced dissolution of silicate minerals by bacteria at near neutral pH. Microbiol Ecol 27:241–251

    Article  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 25:557–586

    Google Scholar 

  • Wang HY, Shen QH, Zhou JM, Wang J, Du CW, Chen XQ (2011) Plants use alternative strategies to utilize non exchangeable potassium in minerals. Plant Soil 343:209–220

    Article  CAS  Google Scholar 

  • Webley DM, Henderson MEK, Taylor IF (1963) The microbiology of rocks and weathered stones. J Soil Sci 14:65–71

    Article  Google Scholar 

  • Welch SA, Ullman WJ (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta 57:2725–2736

    Article  CAS  Google Scholar 

  • Welch SA, Vandevivere P (2009) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol J 12:227–238

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N fixer, P and K solubilizers and AM-fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiaoxi Z, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium solubilizing ability of Bacillus circulans Z1-3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutri Fertil Sci 4:321–330

    Google Scholar 

  • Yanai J, Linehan DJ, Robinson D, Young IM, Hackett CA, Kyuma K, Kosaki T (1996) Effects of inorganic nitrogen application on the dynamics of the soil solution composition in the root zone of maize. Plant and Soil 180:1–9

    Article  CAS  Google Scholar 

  • Zakaria AAB (2009) Growth optimization of potassium solubilizing bacteria isolated from biofertilizer. Malaysia Pahang: Bachelor of Chem. Eng. (Biotech.), Fac. of Chem., Natural Resources Eng. Univ pp. 40

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raphanus sativus L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264

    Article  CAS  Google Scholar 

  • Zhao F, Sheng XF, Huang Z (2008) Isolation of mineral potassium solubilizing bacterial strains from agricultural soils in Shandong province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • Zhou H, Zeng X, Liu F, Qiu G, Hu Y (2006) Screening, identification and desilication of a silicate bacterium. J Cent South Univ Technol 13:337–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kumar, A., Patel, J.S., Bahadur, I., Meena, V.S. (2016). The Molecular Mechanisms of KSMs for Enhancement of Crop Production Under Organic Farming. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_5

Download citation

Publish with us

Policies and ethics