Skip to main content
Log in

Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of industrial chemicals from renewable biomass resources is a promising solution to overcome the society’s dependence on petroleum and to mitigate the pollution resulting from petroleum processing. Klebsiella pneumoniae is a nutritionally versatile bacterium with numerous native pathways for the production of well-known and industrially important platform chemicals derived from various sugars. Genomic sequence analyses have shown that the K. pneumoniae genome has a high similarity with that of Escherichia coli, the most studied organism, which is used in industrial biotechnology processes for fuel and chemical production. Hence, K. pneumoniae can be considered as a promising platform microorganism that can be metabolically engineered for the high-level production of bio-based chemicals. This review highlights the substrate metabolism and the metabolic engineering strategies developed in K. pneumoniae for the production of bio-based chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945–1959.

    Article  CAS  Google Scholar 

  2. Joo, J. C., A. N. Khusnutdinova, R. Flick, T. Kim, U. T. Bornscheuer, A. F. Yakunin, and R. Mahadevan (2017) Alkene hydrogenation activity of enoatereductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 8: 1406–1413.

    Article  CAS  PubMed  Google Scholar 

  3. Baritugo, K. A. G., H. T. Kim, Y. David, J. H. Choi, J. Choi, T. W. Kim, C. Park, S. H. Hong, J. G. Na, K. J. Jeong, J. C. Joo, and S. J. Park (2018) Recent advances in metabolic engineering of Corynebacterium glutamicum strains as potential platform microorganisms for biorefnery. Biofuel Bioprod. Biorefin. doi: 10.1002/bbb.1895

    Google Scholar 

  4. Baritugo, K., H. T. Kim, Y. David, J. Choi, S. H. Hong, K. J. Jeong, J. C. Joo, and S. J. Park (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefnery. Appl. Microbiol. Biotechnol. 102: 3915–37.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, H. T., T. U. Khang, K. Baritugo, S. M. Hyun, K. H. Kang, S. H. Jung, B. K. Song, K. Park, M. Oh, G. B. Kim, H. U. Kim, S. Y. Lee, S. J. Park, and J. C. Joo (2019) Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab. Eng. 51: 99–109.

    Article  CAS  PubMed  Google Scholar 

  6. Andin, N., A. Longieras, T. Veronese, F. Marcato, C. Molina-Jouve, and Uribelarrea, J. L. (2017) Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol. Bioprocess Eng. 22: 308–318.

    Article  CAS  Google Scholar 

  7. Koo, H., B. K. Salunke, B. Iskandarani, W. G. Oh, and B. S. Kim (2017) Improved degradation of lignocellulosic biomass pretreated by Fenton-like reaction using Fe3O4 magnetic nanoparticles. Biotechnol. Bioprocess Eng. 22: 597–603.

    Article  CAS  Google Scholar 

  8. Joo, J. C., Y. H. Oh, J. H. Yu, S. M. Hyun, T. U. Khang, K. H. Kang, B. K. Song, K. Park, M. K. Oh, S. Y. Lee, and S. J. Park (2017) Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresour. Technol. 245: 1692–700.

    Article  CAS  PubMed  Google Scholar 

  9. Baritugo, K., H. T. Kim, Y. David, T. U. Khang, S. M. Hyun, K. H. Kang, J. H. Yu, J. H. Choi, J. J. Song, J. C. Joo, and S. J. Park (2018) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb. Cell Fact. 17: 129.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, H. S., Y. H. Oh, Y. Jang, K. H. Kang, Y. David, J. H. Yu, B. K. Song, J. Choi, Y. K. Chang, J. C. Joo, and S. J. Park. (2016) Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb. Cell Fact. 15: 95.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi, S. Y., S. J. Park, W. J. Kim, J. E. Yang, H. Lee, J. Shin, and S. Y. Lee (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34: 435–40.

    Article  CAS  PubMed  Google Scholar 

  12. Chae, C. G., Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y. A. Jang, H. Lee, A. R. Park, B. K. Song, S. Y. Lee, and S. J. Park (2016) Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 21: 169–74.

    Article  CAS  Google Scholar 

  13. David, Y., M. G. Baylon, P. D. V. N. Sudheer, K. Baritugo, C. G. Chae, Y. J. Kim, T. W. Kim, M. Kim, J. G. Na, and S. J. Park (2017) Screening of microorganisms able to degrade low-rank coal in aerobic conditions: potential coal biosolubilization mediators from coal to biochemical. Biotechnol. Bioprocess Eng. 22: 178–85.

    Article  CAS  Google Scholar 

  14. Sudheer, P. D. V. N., Y. David, C. Chae, Y. J. Kim, M. G. Baylon, K. Baritugo, T. W. Kim, M. Kim, J. G. Na, and S. J. Park (2016) Advances in the biological treatment of coal for synthetic natural gas and chemicals. Korean J. Chem. Eng. 10: 2788–801.

    Article  Google Scholar 

  15. Kim, H. T., K. A. Baritugo, Y. H. Oh, S. M. Hyun, T. U. Khang, K. H. Kang, S. H. Jung, B. K. Song, K. Park, I. K. Kim, M. O. Lee, Y. Kam, Y. T. Hwang, S. J. Park, and J. C. Joo (2018) Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for synthesis of biopolyamide 510. ACS Sustain Chem. Eng. 6: 5296–305.

    Article  CAS  Google Scholar 

  16. Becker, J. and C. Wittmann (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed. Engl. 54: 3328–50.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, J. E., S. J. Park, W. J. Kim, H. J. Kim, B. Kim, H. Lee, J. Shin, and S. Y. Lee (2018) One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Commun. 9: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Choi, S. Y., W. J. Kim, S. J. Yu, S. J. Park, S. G. Im, and S. Y. Lee (2017) Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactateco-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli. Microb. Biotechnol. 10: 1353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buschke, N. and R. Schafer (2013) Metabolic engineering of industrial platform microorganisms for biorefinery applications-optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour. Technol. 135: 544–54.

    Article  CAS  PubMed  Google Scholar 

  20. Barr, J. G. (1977) Klebsiella: taxonomy, nomenclature, and communication. J. Clin. Pathol. 30: 943–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brisse, S., F. Grimont, and P. A. Grimont (2006) The genus Klebsiella. pp.159–196. In: Dwerkin., M., S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes: A Handbook on the Biology of Bacteria. 3rd edn. New York, Springer.

    Google Scholar 

  22. Durgapal, M., V. Kumar, T. H. Yang, H. J. Lee, D. Seung, and S. Park (2014) Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresour. Technol. 159: 223–231.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, C., S. K. Ainala, Y. K. Oh, B. H. Jeon, S. Park, and J. R. Kim (2016) Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. Biotechnol. Bioprocess Eng. 21: 250–260.

    Article  CAS  Google Scholar 

  24. Yu, E. K. C. and J. N. Saddler (1982) Power solvent production by Klebsiella pneumoniae grown on sugars present in wood hemicellulose. Biotechnol. Lett. 4: 121–126.

    Article  CAS  Google Scholar 

  25. Saddler, J. N., K. C. Ernest, M. Mes-Hartree, N. Levitin, and H. H. Brownell (1983) Utilization of enzymatically hydrolyzed wood hemicelluloses by microorganisms for production of liquid fuels. Appl. Environ. Microbiol. 45: 153–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, E. K. C., N. Levitin, and J. N. Saddler (1982) Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid hydrolyzed wood hemicellulose. Biotechnol. Lett. 4: 741–746.

    Article  CAS  Google Scholar 

  27. Jansen, N. B. and G. T. Tsao (1983) Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. pp. 85–89. In: A. Fiechter (eds.). Pentoses and Lignin. Springer, Berlin Heidelberg.

    Google Scholar 

  28. Feldmann, S. D., H. Sahm, and G. A. Sprenger (1992) Cloning and expression of the genes for xylose isomerase and xylulokinase from Klebsiella pneumoniae 1033 in Escherichia coli K12. Mol. Genet. Genomics. 234: 201–210.

    Article  CAS  Google Scholar 

  29. Nishikawa, N. K., R. Sutcliffe, and J. N. Saddler (1988) The effect of wood-derived inhibitors on 2,3-butanediol production by Klebsiella pneumoniae. Biotechnol. Bioeng. 31: 624–627.

    Article  CAS  PubMed  Google Scholar 

  30. Nishikawa, N. K., R. Sutcliffe, and J. N. Saddler (1988) The influence of lignin degradation products on xylose fermentation by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 27: 549–552.

    Article  CAS  Google Scholar 

  31. Grover, B. P., S. K. Garg, and J. Verma (1990) Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J. Microbiol. Biotechnol. 6: 328–332.

    Article  CAS  PubMed  Google Scholar 

  32. Mu, Y., Z. L. Xiu, and D. J. Zhang (2008) A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochem. Eng. J. 40: 537–541.

    Article  CAS  Google Scholar 

  33. Yang, F., M. A. Hanna, and R. Sun (2012) Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol. Biofuels 5: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y., Y. Li, C. Du, M. Liu, and Z. A. Cao (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab. Eng. 8: 578–586.

    Article  CAS  PubMed  Google Scholar 

  35. Sun, J., J. van den Heuvel, P. Soucaille, Y. Qu, and A. P. Zeng (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol. Prog. 19: 263–272.

    Article  CAS  PubMed  Google Scholar 

  36. Wei, D., M. Wang, B. Jiang, J. Shi, and J. Hao (2014) Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae. J. Biotechnol. 177: 13–19.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, G. L., X. L. Xu, C. Li, and B. Ma (2009) Cloning, expression and reactivating characterization of glycerol dehydratase reactivation factor from Klebsiella pneumoniae XJPD-Li. World J. Microbiol. Biotechnol. 25: 1947–1953.

    Article  Google Scholar 

  38. Seo, M. Y., J. W. Seo, S. Y. Heo, J. O. Baek, D. Rairakhwada, B. R. Oh, P. S. Seo, M. H. Choi, and C. H. Kim (2009) Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl. Microbiol. Biotechnol. 84: 527–534.

    Article  CAS  PubMed  Google Scholar 

  39. Zhuge, B., C. Zhang, H. Fang, J. Zhuge, and K. Permaul (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl. Microbiol. Biotechnol. 87: 2177–2184.

    Article  CAS  PubMed  Google Scholar 

  40. Xu, Y. Z., N. N. Guo, Z. M. Zheng, X. J. Ou, H. J. Liu, and D. H. Liu (2009) Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol. Bioeng. 104: 965–972.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong, Z., L. Liu, J. Zhou, L. Gao, J. Xu, S. Fu, and H. Gong (2014) Influences of 3-hydroxypropionaldehyde and lactate on the production of 1,3-propanediol by Klebsiella pneumoniae. Bioresour Bioprocess 1: 2.

    Article  Google Scholar 

  42. Oh, B. R., S. Lee, S. Heo, J. Seo, and C. H. Kim (2018) Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Microb. Cell Fact. 17: 92

    Article  PubMed  PubMed Central  Google Scholar 

  43. Park, J. M., C. Rathnasingh, and H. Song (2017) Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. J. Ind. Microbiol. Biotechnol. 44: 431–441.

    Article  CAS  PubMed  Google Scholar 

  44. Luo, L. H., J. W. Seo, B. R. Oh, P. S. Seo, S. Y. Heo, W. K. Hong, D. H. Kim, and C. H. Kim (2011) Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain defective in the oxidative pathway. J. Ind. Microbiol. Biotechnol. 38: 991–999.

    Article  CAS  PubMed  Google Scholar 

  45. Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, J. H. Son, D. H. Park, and C. H. Kim (2012) Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate byproduct formation. Bioprocess Biosyst. Eng. 35: 159–165.

    Article  CAS  PubMed  Google Scholar 

  46. Jin, P., S. G. Lu, H. Huang, F. Luo, and S. Li (2011) Enhanced reducing equivalent generation for 1,3-propanediol production through cofermentation of glycerol and xylose by Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 165: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, M., G. Wang, T. Zhang, L. Fan, and T. Tan (2017) Multimodular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate Appl. Microbiol. Biotechnol. 101: 647–657.

    Article  CAS  Google Scholar 

  48. Kumar, V., S. Ashok, and S. Park (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945–961.

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y. and P. Tian (2015) Contemplating 3-hydroxypropionic acid biosynthesis in Klebsiella pneumoniae. Indian J. Microbiol. 55: 131–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo, L. H., C. H. Kim, S. Y. Heo, B. R. Oh, W. K. Hong, S. Kim, D. H. Kim, and J. W. Seo (2012) Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae. Bioresour. Technol. 103: 1–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ashok, S., M. Sankaranarayanan, Y. Ko, K. E. Jae, S. K. Ainala, V. Kumar, and S. Park (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaT ΔyqhD which can produce vitamin B12 naturally. Biotechnol. Bioeng. 110: 511–524.

    Article  CAS  PubMed  Google Scholar 

  52. Luo, L. H., J. W. Seo, S. Y. Heo, B. R. Oh, D. H. Kim, and C. H. Kim (2013) Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol. Bioprocess Biosyst. Eng. 36: 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, K., X. Wang, X. Ge, and P. Tian (2012) Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol. Indian J. Microbiol. 52: 478–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Y., M. Su, X. Ge, and P. Tian (2013) Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways. Biotechnol. Lett. 35: 1609–1615.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, J., B. Huang, H. Wu, Z. Li, and Q. Ye (2018) Efficient 3-hydroxypropionic acid production from glycerol by metabolically engineered Klebsiella pneumoniae. Bioresour. Bioprocess 5: 34.

    Article  Google Scholar 

  56. Ko, Y., E. Seol, B. S. Seka, S. Kwon, J. Lee, and S. Park (2017) Metabolic engineering of Klebsiella pneumoniae J2B for coproduction of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Reduction of acetate and other by-products. Bioresour. Technol. 244: 1096–1103.

    Article  CAS  PubMed  Google Scholar 

  57. Su, M. Y., Y. Li, X. Z. Ge, and P. F. Tian (2014) Insights into 3-hydroxypropionic acid biosynthesis revealed by overexpressing native glycerol dehydrogenase in Klebsiella pneumoniae. Biotechnol. Biotechnol. Equip. 28: 762–768.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim, B., S. Lee, J. Park, M. Lu, M. Oh, Y. Kim, and J. Lee (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258–1263.

    Article  CAS  PubMed  Google Scholar 

  59. Lu, M., C. Park, S. Lee, B. Kim, M. K. Oh, Y. Um, J. Kim, and J. Lee (2014) The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioprocess Biosyst. Eng. 37: 343–353.

    Article  CAS  PubMed  Google Scholar 

  60. Guo, X., C. Cao, Y. Wang, C. Li, M. Wu, Y. Chen, P. Zhang, H. Pei, and D. Xiao (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol. Biofuels 7: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jung, M. Y., S. Mazumdar, S. H. Shin, K. S. Yang, J. Lee, and M. K. Oh (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formatelyase gene. Appl. Environ. Microbiol. 80: 6195–6203.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rathnasingh, C., J. M. Park, D. K. Kim, H. Song, and Y. K. Chang (2016) Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnol. Lett. 38975–982.

    Google Scholar 

  63. Kim, B., S. Lee, D. Jeong, J. Yang, M. K. Oh, and J. Lee (2014) Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering. PLoS One 9: e105322.

    Article  Google Scholar 

  64. Park, J. M., W. K. Hong, S. M. Lee, S. Y. Heo, Y. R. Jung, I. Y. Kang, B. R. Oh, J. W. Seo, and C. H. Kim (2014) Identification and characterization of a short-chain acyl dehydrogenase from Klebsiella pneumoniae and its application for high-level production of L-2,3-butanediol. J. Ind. Microbiol. Biotechnol. 41: 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Y., F. Tao, and P. Xu (2014) Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 289: 6080–6090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, C., D. Wei, J. Shi, M. Wang, and J. Hao (2014) Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 98: 4603–4613.

    Article  CAS  PubMed  Google Scholar 

  67. Xu, Q., L. Xie, Y. Li, H. Lin, S. Sun, X. Guan, K. Hu, Y. Shen, and L. Zhang (2014) Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J. Chem. Technol. Biotechnol. 90: 93–100.

    Article  Google Scholar 

  68. Jang, J., H. Jung, D. Kim, and M. Oh (2017) Acetoin production using metabolically engineered Klebsiella pneumoniae. Korean Chem. Eng. Res. 55: 237–241.

    CAS  Google Scholar 

  69. Wang, Y., F., B. Xin, H. Liu, Y. Gao, N. Zhou, and P. Xu (2017) Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab. Eng. 39: 90–101.

    Article  CAS  PubMed  Google Scholar 

  70. Song, Z., Y. Sun, B. Wei, and Z. Xiu (2013) Two-step saltingout extraction of 1,3-propanediol and lactic acid from the fermentation broth of Klebsiella pneumoniae on biodieselderived crude glycerol. Eng. Life Sci. 13: 487–495.

    Article  CAS  Google Scholar 

  71. Feng, X., Y. Ding, M. Xian, X. Xu, R. Zhang, and G. Zhao (2014) Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour. Technol. 172: 269–275.

    Article  CAS  PubMed  Google Scholar 

  72. Feng, X., L. Jiang, X. Han, X. Liu, Z. Zhao, H. Liu, M. Xian, and G. Zhao (2017) Production of d-lactate from glucose using Klebsiella pneumoniae mutants. Microb. Cell Fact. 16: 209.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jung, H. M., M. Y. Jung, and M. K. Oh (2015) Metabolic engineering of Klebsiella pneumoniae for the production of cis, cis-muconic acid. Appl. Microbiol. Biotechnol. 99: 5217–5225.

    Article  CAS  PubMed  Google Scholar 

  74. Banerjee, M. (1989) Kinetics of ethanolic fermentation of D-xylose by Klebsiella pneumoniae and its mutants. Appl. Environ. Microbiol. 55: 1169–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, M. H. Joe, D. H. Park, and C. H. Kim (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour. Technol. 102: 3918–3922.

    Article  CAS  PubMed  Google Scholar 

  76. Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, S. Kim, O. Kwon, J. Sohn, M. Joe, D. Park, and C. H. Kim (2012) Enhancement of ethanol production from glycerol in a Klebsiella pneumoniae mutant strain by the inactivation of lactate dehydrogenase. Process Biochem. 47: 156–159.

    Article  CAS  Google Scholar 

  77. Oh, B. R., W. K. Hong, S. Y. Heo, M. H. Joe, J. W. Seo, and C. H. Kim (2013) The role of aldehyde/alcohol dehydrogenase (AdhE) in ethanol production from glycerol by Klebsiella pneumoniae. J. Ind. Microb. Biotechnol. 40: 227–233.

    Article  CAS  Google Scholar 

  78. Wang, M., L. Fan, and T. Tan (2014) 1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Adv. 4: 57791–57798.

    Article  CAS  Google Scholar 

  79. Oh, B. R., S. Y. Heo, S. M. Lee, W. K. Hong, J. M. Park, Y. R. Jung, J. M. Park, W. Hong, J. Sohn, D. Kim, S. Jung, C. H. Kim, and J. Seo (2014) Production of isobutanol from crude glycerol by a genetically-engineered Klebsiella pneumoniae strain. Biotechnol. Lett. 36: 397–402.

    Article  CAS  Google Scholar 

  80. Gu, J., J. Zhou, Z. Zhang, C. H. Kim, B. Jiang, J. Shi, and J. Hao (2017) Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway. Metab. Eng. 43: 71–84.

    Article  CAS  PubMed  Google Scholar 

  81. Chen, Z., Y. Wu, J. Huang, and D. Liu (2015) Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. Bioresour. Technol. 197: 260–265.

    Article  CAS  PubMed  Google Scholar 

  82. Da Silva, G. P., M. Mack, and J. Contiero (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30–39.

    Article  Google Scholar 

  83. Dobson, R., V. Gray, and K. Rumbold (2012) Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217–226.

    Article  CAS  PubMed  Google Scholar 

  84. Jun, S. A., C. Moon, C. H. Kang, S. W. Kong, B. I. Sang, and Y. Um (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 161: 491–501.

    Article  CAS  PubMed  Google Scholar 

  85. Sattayasamitsathit, S., P. Methacanon, and P. Prasertsan (2011) Enhance 1,3-propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase pH-controlled strategy. Electron. J. Biotechnol. 14: 6.

    CAS  Google Scholar 

  86. Almeida, J. R., L. C. Fávaro, and B. F. Quirino (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuels 5: 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo, N. N., Z. M. Zheng, Y. L. Mai, H. J. Liu, and D. H. Liu (2010) Consequences of cps mutation of Klebsiella pneumoniae on 1,3-propanediol fermentation. Appl. Microbiol. Biotechnol. 86: 701–707.

    Article  CAS  PubMed  Google Scholar 

  88. Jung, S. G., J. H. Jang, A. Y. Kim, M. C. Lim, B. Kim, J. Lee, and Y. R. Kim (2013) Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulencerelated wabG gene. Appl. Microbiol. Biotechnol. 97: 1997–2007.

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, J., S. Li, X. Ji, H. Huang, and N. Hu (2009) Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J. Microbiol. Biotechnol. 25: 1217–1223.

    Article  CAS  Google Scholar 

  90. Li, Y., X. Wang, X. Z. Ge, and P. F. Tian (2016) High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci. Rep. 6: 26932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qin, J., Z. Xiao, C. Ma, N. Xie, P. Liu, and P. Xu (2006) Production of 2,3-Butandeiol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chin. J. Chem. Eng. 14: 132–136.

    Article  CAS  Google Scholar 

  92. Zheng, Y., H. Zhang, L. Zhao, L. Wei, X. Ma, and D. Wei (2008) One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae. J. Chem. Technol. Biotechnol. 83: 1409–1412.

    Article  CAS  Google Scholar 

  93. Ma, C., A. Wang, J. Qin, L. Li, X. Ai, T. Jiang, H. Tang, and P. Xu (2009) Enhanced 2,3-Butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82:49–57.

    Book  Google Scholar 

  94. Petrov, K. and P. Petrova (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 84: 659–65.

    Article  CAS  PubMed  Google Scholar 

  95. Sun, L.H., X. D. Wang, J. Y. Dai, and Z. L. Xiu (2009) Microbial production of 2,3-butandiol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 82: 847–52.

    Article  CAS  PubMed  Google Scholar 

  96. Cho, J. H., C. Rathnasingh, H. Song, B. W. Chung, H. J. Lee, and D. Seung (2012) Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol. Bioprocess Biosyst. Eng. 35: 1081–8.

    Article  CAS  PubMed  Google Scholar 

  97. Tsvetanova, F., P. Petrova, and K. Petrov (2014) 2,3-butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Appl. Microbiol. Biotechnol. 98: 2441–51.

    Article  CAS  PubMed  Google Scholar 

  98. Lee, J. H., M. Jung, and M. Oh (2018) High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol. Biofuels 11: 104.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lu, X. Y., S. L. Ren, J. Z. Lu, H. Zong, J. Song, and B. Zhuge (2018) Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. J. Appl. Microbiol. 124: 682–690.

    Article  CAS  PubMed  Google Scholar 

  100. Zong, H., X. Liu, W. Chen, B. Zhuge, and J. Sun (2017) Construction of glycerol synthesis pathway in Klebsiella pneumoniae for bioconversion of glucose into 1,3-propanediol. biotechnol. Bioprocess Eng. 22: 549–555.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Chan Joo or Si Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhie, M.N., Kim, H.T., Jo, S.Y. et al. Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. Biotechnol Bioproc E 24, 48–64 (2019). https://doi.org/10.1007/s12257-018-0346-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0346-x

Keywords

Navigation